Provided by: liblapack-doc_3.12.1-2_all bug

NAME

       hetd2 - {he,sy}td2: reduction to tridiagonal, level 2

SYNOPSIS

   Functions
       subroutine chetd2 (uplo, n, a, lda, d, e, tau, info)
           CHETD2 reduces a Hermitian matrix to real symmetric tridiagonal form by an unitary similarity
           transformation (unblocked algorithm).
       subroutine dsytd2 (uplo, n, a, lda, d, e, tau, info)
           DSYTD2 reduces a symmetric matrix to real symmetric tridiagonal form by an orthogonal similarity
           transformation (unblocked algorithm).
       subroutine ssytd2 (uplo, n, a, lda, d, e, tau, info)
           SSYTD2 reduces a symmetric matrix to real symmetric tridiagonal form by an orthogonal similarity
           transformation (unblocked algorithm).
       subroutine zhetd2 (uplo, n, a, lda, d, e, tau, info)
           ZHETD2 reduces a Hermitian matrix to real symmetric tridiagonal form by an unitary similarity
           transformation (unblocked algorithm).

Detailed Description

Function Documentation

   subroutine chetd2 (character uplo, integer n, complex, dimension( lda, * ) a, integer lda, real, dimension( *
       ) d, real, dimension( * ) e, complex, dimension( * ) tau, integer info)
       CHETD2 reduces a Hermitian matrix to real symmetric tridiagonal form by an unitary similarity
       transformation (unblocked algorithm).

       Purpose:

            CHETD2 reduces a complex Hermitian matrix A to real symmetric
            tridiagonal form T by a unitary similarity transformation:
            Q**H * A * Q = T.

       Parameters
           UPLO

                     UPLO is CHARACTER*1
                     Specifies whether the upper or lower triangular part of the
                     Hermitian matrix A is stored:
                     = 'U':  Upper triangular
                     = 'L':  Lower triangular

           N

                     N is INTEGER
                     The order of the matrix A.  N >= 0.

           A

                     A is COMPLEX array, dimension (LDA,N)
                     On entry, the Hermitian matrix A.  If UPLO = 'U', the leading
                     n-by-n upper triangular part of A contains the upper
                     triangular part of the matrix A, and the strictly lower
                     triangular part of A is not referenced.  If UPLO = 'L', the
                     leading n-by-n lower triangular part of A contains the lower
                     triangular part of the matrix A, and the strictly upper
                     triangular part of A is not referenced.
                     On exit, if UPLO = 'U', the diagonal and first superdiagonal
                     of A are overwritten by the corresponding elements of the
                     tridiagonal matrix T, and the elements above the first
                     superdiagonal, with the array TAU, represent the unitary
                     matrix Q as a product of elementary reflectors; if UPLO
                     = 'L', the diagonal and first subdiagonal of A are over-
                     written by the corresponding elements of the tridiagonal
                     matrix T, and the elements below the first subdiagonal, with
                     the array TAU, represent the unitary matrix Q as a product
                     of elementary reflectors. See Further Details.

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A.  LDA >= max(1,N).

           D

                     D is REAL array, dimension (N)
                     The diagonal elements of the tridiagonal matrix T:
                     D(i) = A(i,i).

           E

                     E is REAL array, dimension (N-1)
                     The off-diagonal elements of the tridiagonal matrix T:
                     E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.

           TAU

                     TAU is COMPLEX array, dimension (N-1)
                     The scalar factors of the elementary reflectors (see Further
                     Details).

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Further Details:

             If UPLO = 'U', the matrix Q is represented as a product of elementary
             reflectors

                Q = H(n-1) . . . H(2) H(1).

             Each H(i) has the form

                H(i) = I - tau * v * v**H

             where tau is a complex scalar, and v is a complex vector with
             v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
             A(1:i-1,i+1), and tau in TAU(i).

             If UPLO = 'L', the matrix Q is represented as a product of elementary
             reflectors

                Q = H(1) H(2) . . . H(n-1).

             Each H(i) has the form

                H(i) = I - tau * v * v**H

             where tau is a complex scalar, and v is a complex vector with
             v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
             and tau in TAU(i).

             The contents of A on exit are illustrated by the following examples
             with n = 5:

             if UPLO = 'U':                       if UPLO = 'L':

               (  d   e   v2  v3  v4 )              (  d                  )
               (      d   e   v3  v4 )              (  e   d              )
               (          d   e   v4 )              (  v1  e   d          )
               (              d   e  )              (  v1  v2  e   d      )
               (                  d  )              (  v1  v2  v3  e   d  )

             where d and e denote diagonal and off-diagonal elements of T, and vi
             denotes an element of the vector defining H(i).

   subroutine dsytd2 (character uplo, integer n, double precision, dimension( lda, * ) a, integer lda, double
       precision, dimension( * ) d, double precision, dimension( * ) e, double precision, dimension( * ) tau,
       integer info)
       DSYTD2 reduces a symmetric matrix to real symmetric tridiagonal form by an orthogonal similarity
       transformation (unblocked algorithm).

       Purpose:

            DSYTD2 reduces a real symmetric matrix A to symmetric tridiagonal
            form T by an orthogonal similarity transformation: Q**T * A * Q = T.

       Parameters
           UPLO

                     UPLO is CHARACTER*1
                     Specifies whether the upper or lower triangular part of the
                     symmetric matrix A is stored:
                     = 'U':  Upper triangular
                     = 'L':  Lower triangular

           N

                     N is INTEGER
                     The order of the matrix A.  N >= 0.

           A

                     A is DOUBLE PRECISION array, dimension (LDA,N)
                     On entry, the symmetric matrix A.  If UPLO = 'U', the leading
                     n-by-n upper triangular part of A contains the upper
                     triangular part of the matrix A, and the strictly lower
                     triangular part of A is not referenced.  If UPLO = 'L', the
                     leading n-by-n lower triangular part of A contains the lower
                     triangular part of the matrix A, and the strictly upper
                     triangular part of A is not referenced.
                     On exit, if UPLO = 'U', the diagonal and first superdiagonal
                     of A are overwritten by the corresponding elements of the
                     tridiagonal matrix T, and the elements above the first
                     superdiagonal, with the array TAU, represent the orthogonal
                     matrix Q as a product of elementary reflectors; if UPLO
                     = 'L', the diagonal and first subdiagonal of A are over-
                     written by the corresponding elements of the tridiagonal
                     matrix T, and the elements below the first subdiagonal, with
                     the array TAU, represent the orthogonal matrix Q as a product
                     of elementary reflectors. See Further Details.

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A.  LDA >= max(1,N).

           D

                     D is DOUBLE PRECISION array, dimension (N)
                     The diagonal elements of the tridiagonal matrix T:
                     D(i) = A(i,i).

           E

                     E is DOUBLE PRECISION array, dimension (N-1)
                     The off-diagonal elements of the tridiagonal matrix T:
                     E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.

           TAU

                     TAU is DOUBLE PRECISION array, dimension (N-1)
                     The scalar factors of the elementary reflectors (see Further
                     Details).

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Further Details:

             If UPLO = 'U', the matrix Q is represented as a product of elementary
             reflectors

                Q = H(n-1) . . . H(2) H(1).

             Each H(i) has the form

                H(i) = I - tau * v * v**T

             where tau is a real scalar, and v is a real vector with
             v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
             A(1:i-1,i+1), and tau in TAU(i).

             If UPLO = 'L', the matrix Q is represented as a product of elementary
             reflectors

                Q = H(1) H(2) . . . H(n-1).

             Each H(i) has the form

                H(i) = I - tau * v * v**T

             where tau is a real scalar, and v is a real vector with
             v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
             and tau in TAU(i).

             The contents of A on exit are illustrated by the following examples
             with n = 5:

             if UPLO = 'U':                       if UPLO = 'L':

               (  d   e   v2  v3  v4 )              (  d                  )
               (      d   e   v3  v4 )              (  e   d              )
               (          d   e   v4 )              (  v1  e   d          )
               (              d   e  )              (  v1  v2  e   d      )
               (                  d  )              (  v1  v2  v3  e   d  )

             where d and e denote diagonal and off-diagonal elements of T, and vi
             denotes an element of the vector defining H(i).

   subroutine ssytd2 (character uplo, integer n, real, dimension( lda, * ) a, integer lda, real, dimension( * )
       d, real, dimension( * ) e, real, dimension( * ) tau, integer info)
       SSYTD2 reduces a symmetric matrix to real symmetric tridiagonal form by an orthogonal similarity
       transformation (unblocked algorithm).

       Purpose:

            SSYTD2 reduces a real symmetric matrix A to symmetric tridiagonal
            form T by an orthogonal similarity transformation: Q**T * A * Q = T.

       Parameters
           UPLO

                     UPLO is CHARACTER*1
                     Specifies whether the upper or lower triangular part of the
                     symmetric matrix A is stored:
                     = 'U':  Upper triangular
                     = 'L':  Lower triangular

           N

                     N is INTEGER
                     The order of the matrix A.  N >= 0.

           A

                     A is REAL array, dimension (LDA,N)
                     On entry, the symmetric matrix A.  If UPLO = 'U', the leading
                     n-by-n upper triangular part of A contains the upper
                     triangular part of the matrix A, and the strictly lower
                     triangular part of A is not referenced.  If UPLO = 'L', the
                     leading n-by-n lower triangular part of A contains the lower
                     triangular part of the matrix A, and the strictly upper
                     triangular part of A is not referenced.
                     On exit, if UPLO = 'U', the diagonal and first superdiagonal
                     of A are overwritten by the corresponding elements of the
                     tridiagonal matrix T, and the elements above the first
                     superdiagonal, with the array TAU, represent the orthogonal
                     matrix Q as a product of elementary reflectors; if UPLO
                     = 'L', the diagonal and first subdiagonal of A are over-
                     written by the corresponding elements of the tridiagonal
                     matrix T, and the elements below the first subdiagonal, with
                     the array TAU, represent the orthogonal matrix Q as a product
                     of elementary reflectors. See Further Details.

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A.  LDA >= max(1,N).

           D

                     D is REAL array, dimension (N)
                     The diagonal elements of the tridiagonal matrix T:
                     D(i) = A(i,i).

           E

                     E is REAL array, dimension (N-1)
                     The off-diagonal elements of the tridiagonal matrix T:
                     E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.

           TAU

                     TAU is REAL array, dimension (N-1)
                     The scalar factors of the elementary reflectors (see Further
                     Details).

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Further Details:

             If UPLO = 'U', the matrix Q is represented as a product of elementary
             reflectors

                Q = H(n-1) . . . H(2) H(1).

             Each H(i) has the form

                H(i) = I - tau * v * v**T

             where tau is a real scalar, and v is a real vector with
             v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
             A(1:i-1,i+1), and tau in TAU(i).

             If UPLO = 'L', the matrix Q is represented as a product of elementary
             reflectors

                Q = H(1) H(2) . . . H(n-1).

             Each H(i) has the form

                H(i) = I - tau * v * v**T

             where tau is a real scalar, and v is a real vector with
             v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
             and tau in TAU(i).

             The contents of A on exit are illustrated by the following examples
             with n = 5:

             if UPLO = 'U':                       if UPLO = 'L':

               (  d   e   v2  v3  v4 )              (  d                  )
               (      d   e   v3  v4 )              (  e   d              )
               (          d   e   v4 )              (  v1  e   d          )
               (              d   e  )              (  v1  v2  e   d      )
               (                  d  )              (  v1  v2  v3  e   d  )

             where d and e denote diagonal and off-diagonal elements of T, and vi
             denotes an element of the vector defining H(i).

   subroutine zhetd2 (character uplo, integer n, complex*16, dimension( lda, * ) a, integer lda, double
       precision, dimension( * ) d, double precision, dimension( * ) e, complex*16, dimension( * ) tau, integer
       info)
       ZHETD2 reduces a Hermitian matrix to real symmetric tridiagonal form by an unitary similarity
       transformation (unblocked algorithm).

       Purpose:

            ZHETD2 reduces a complex Hermitian matrix A to real symmetric
            tridiagonal form T by a unitary similarity transformation:
            Q**H * A * Q = T.

       Parameters
           UPLO

                     UPLO is CHARACTER*1
                     Specifies whether the upper or lower triangular part of the
                     Hermitian matrix A is stored:
                     = 'U':  Upper triangular
                     = 'L':  Lower triangular

           N

                     N is INTEGER
                     The order of the matrix A.  N >= 0.

           A

                     A is COMPLEX*16 array, dimension (LDA,N)
                     On entry, the Hermitian matrix A.  If UPLO = 'U', the leading
                     n-by-n upper triangular part of A contains the upper
                     triangular part of the matrix A, and the strictly lower
                     triangular part of A is not referenced.  If UPLO = 'L', the
                     leading n-by-n lower triangular part of A contains the lower
                     triangular part of the matrix A, and the strictly upper
                     triangular part of A is not referenced.
                     On exit, if UPLO = 'U', the diagonal and first superdiagonal
                     of A are overwritten by the corresponding elements of the
                     tridiagonal matrix T, and the elements above the first
                     superdiagonal, with the array TAU, represent the unitary
                     matrix Q as a product of elementary reflectors; if UPLO
                     = 'L', the diagonal and first subdiagonal of A are over-
                     written by the corresponding elements of the tridiagonal
                     matrix T, and the elements below the first subdiagonal, with
                     the array TAU, represent the unitary matrix Q as a product
                     of elementary reflectors. See Further Details.

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A.  LDA >= max(1,N).

           D

                     D is DOUBLE PRECISION array, dimension (N)
                     The diagonal elements of the tridiagonal matrix T:
                     D(i) = A(i,i).

           E

                     E is DOUBLE PRECISION array, dimension (N-1)
                     The off-diagonal elements of the tridiagonal matrix T:
                     E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.

           TAU

                     TAU is COMPLEX*16 array, dimension (N-1)
                     The scalar factors of the elementary reflectors (see Further
                     Details).

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Further Details:

             If UPLO = 'U', the matrix Q is represented as a product of elementary
             reflectors

                Q = H(n-1) . . . H(2) H(1).

             Each H(i) has the form

                H(i) = I - tau * v * v**H

             where tau is a complex scalar, and v is a complex vector with
             v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
             A(1:i-1,i+1), and tau in TAU(i).

             If UPLO = 'L', the matrix Q is represented as a product of elementary
             reflectors

                Q = H(1) H(2) . . . H(n-1).

             Each H(i) has the form

                H(i) = I - tau * v * v**H

             where tau is a complex scalar, and v is a complex vector with
             v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
             and tau in TAU(i).

             The contents of A on exit are illustrated by the following examples
             with n = 5:

             if UPLO = 'U':                       if UPLO = 'L':

               (  d   e   v2  v3  v4 )              (  d                  )
               (      d   e   v3  v4 )              (  e   d              )
               (          d   e   v4 )              (  v1  e   d          )
               (              d   e  )              (  v1  v2  e   d      )
               (                  d  )              (  v1  v2  v3  e   d  )

             where d and e denote diagonal and off-diagonal elements of T, and vi
             denotes an element of the vector defining H(i).

Author

       Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0                              Tue Jan 28 2025 00:54:31                                    hetd2(3)