Provided by: liblapack-doc_3.12.1-2_all bug

NAME

       gtts2 - gtts2: triangular solve using factor

SYNOPSIS

   Functions
       subroutine cgtts2 (itrans, n, nrhs, dl, d, du, du2, ipiv, b, ldb)
           CGTTS2 solves a system of linear equations with a tridiagonal matrix using the LU factorization
           computed by sgttrf.
       subroutine dgtts2 (itrans, n, nrhs, dl, d, du, du2, ipiv, b, ldb)
           DGTTS2 solves a system of linear equations with a tridiagonal matrix using the LU factorization
           computed by sgttrf.
       subroutine sgtts2 (itrans, n, nrhs, dl, d, du, du2, ipiv, b, ldb)
           SGTTS2 solves a system of linear equations with a tridiagonal matrix using the LU factorization
           computed by sgttrf.
       subroutine zgtts2 (itrans, n, nrhs, dl, d, du, du2, ipiv, b, ldb)
           ZGTTS2 solves a system of linear equations with a tridiagonal matrix using the LU factorization
           computed by sgttrf.

Detailed Description

Function Documentation

   subroutine cgtts2 (integer itrans, integer n, integer nrhs, complex, dimension( * ) dl, complex, dimension( *
       ) d, complex, dimension( * ) du, complex, dimension( * ) du2, integer, dimension( * ) ipiv, complex,
       dimension( ldb, * ) b, integer ldb)
       CGTTS2 solves a system of linear equations with a tridiagonal matrix using the LU factorization computed
       by sgttrf.

       Purpose:

            CGTTS2 solves one of the systems of equations
               A * X = B,  A**T * X = B,  or  A**H * X = B,
            with a tridiagonal matrix A using the LU factorization computed
            by CGTTRF.

       Parameters
           ITRANS

                     ITRANS is INTEGER
                     Specifies the form of the system of equations.
                     = 0:  A * X = B     (No transpose)
                     = 1:  A**T * X = B  (Transpose)
                     = 2:  A**H * X = B  (Conjugate transpose)

           N

                     N is INTEGER
                     The order of the matrix A.

           NRHS

                     NRHS is INTEGER
                     The number of right hand sides, i.e., the number of columns
                     of the matrix B.  NRHS >= 0.

           DL

                     DL is COMPLEX array, dimension (N-1)
                     The (n-1) multipliers that define the matrix L from the
                     LU factorization of A.

           D

                     D is COMPLEX array, dimension (N)
                     The n diagonal elements of the upper triangular matrix U from
                     the LU factorization of A.

           DU

                     DU is COMPLEX array, dimension (N-1)
                     The (n-1) elements of the first super-diagonal of U.

           DU2

                     DU2 is COMPLEX array, dimension (N-2)
                     The (n-2) elements of the second super-diagonal of U.

           IPIV

                     IPIV is INTEGER array, dimension (N)
                     The pivot indices; for 1 <= i <= n, row i of the matrix was
                     interchanged with row IPIV(i).  IPIV(i) will always be either
                     i or i+1; IPIV(i) = i indicates a row interchange was not
                     required.

           B

                     B is COMPLEX array, dimension (LDB,NRHS)
                     On entry, the matrix of right hand side vectors B.
                     On exit, B is overwritten by the solution vectors X.

           LDB

                     LDB is INTEGER
                     The leading dimension of the array B.  LDB >= max(1,N).

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

   subroutine dgtts2 (integer itrans, integer n, integer nrhs, double precision, dimension( * ) dl, double
       precision, dimension( * ) d, double precision, dimension( * ) du, double precision, dimension( * ) du2,
       integer, dimension( * ) ipiv, double precision, dimension( ldb, * ) b, integer ldb)
       DGTTS2 solves a system of linear equations with a tridiagonal matrix using the LU factorization computed
       by sgttrf.

       Purpose:

            DGTTS2 solves one of the systems of equations
               A*X = B  or  A**T*X = B,
            with a tridiagonal matrix A using the LU factorization computed
            by DGTTRF.

       Parameters
           ITRANS

                     ITRANS is INTEGER
                     Specifies the form of the system of equations.
                     = 0:  A * X = B  (No transpose)
                     = 1:  A**T* X = B  (Transpose)
                     = 2:  A**T* X = B  (Conjugate transpose = Transpose)

           N

                     N is INTEGER
                     The order of the matrix A.

           NRHS

                     NRHS is INTEGER
                     The number of right hand sides, i.e., the number of columns
                     of the matrix B.  NRHS >= 0.

           DL

                     DL is DOUBLE PRECISION array, dimension (N-1)
                     The (n-1) multipliers that define the matrix L from the
                     LU factorization of A.

           D

                     D is DOUBLE PRECISION array, dimension (N)
                     The n diagonal elements of the upper triangular matrix U from
                     the LU factorization of A.

           DU

                     DU is DOUBLE PRECISION array, dimension (N-1)
                     The (n-1) elements of the first super-diagonal of U.

           DU2

                     DU2 is DOUBLE PRECISION array, dimension (N-2)
                     The (n-2) elements of the second super-diagonal of U.

           IPIV

                     IPIV is INTEGER array, dimension (N)
                     The pivot indices; for 1 <= i <= n, row i of the matrix was
                     interchanged with row IPIV(i).  IPIV(i) will always be either
                     i or i+1; IPIV(i) = i indicates a row interchange was not
                     required.

           B

                     B is DOUBLE PRECISION array, dimension (LDB,NRHS)
                     On entry, the matrix of right hand side vectors B.
                     On exit, B is overwritten by the solution vectors X.

           LDB

                     LDB is INTEGER
                     The leading dimension of the array B.  LDB >= max(1,N).

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

   subroutine sgtts2 (integer itrans, integer n, integer nrhs, real, dimension( * ) dl, real, dimension( * ) d,
       real, dimension( * ) du, real, dimension( * ) du2, integer, dimension( * ) ipiv, real, dimension( ldb, *
       ) b, integer ldb)
       SGTTS2 solves a system of linear equations with a tridiagonal matrix using the LU factorization computed
       by sgttrf.

       Purpose:

            SGTTS2 solves one of the systems of equations
               A*X = B  or  A**T*X = B,
            with a tridiagonal matrix A using the LU factorization computed
            by SGTTRF.

       Parameters
           ITRANS

                     ITRANS is INTEGER
                     Specifies the form of the system of equations.
                     = 0:  A * X = B  (No transpose)
                     = 1:  A**T* X = B  (Transpose)
                     = 2:  A**T* X = B  (Conjugate transpose = Transpose)

           N

                     N is INTEGER
                     The order of the matrix A.

           NRHS

                     NRHS is INTEGER
                     The number of right hand sides, i.e., the number of columns
                     of the matrix B.  NRHS >= 0.

           DL

                     DL is REAL array, dimension (N-1)
                     The (n-1) multipliers that define the matrix L from the
                     LU factorization of A.

           D

                     D is REAL array, dimension (N)
                     The n diagonal elements of the upper triangular matrix U from
                     the LU factorization of A.

           DU

                     DU is REAL array, dimension (N-1)
                     The (n-1) elements of the first super-diagonal of U.

           DU2

                     DU2 is REAL array, dimension (N-2)
                     The (n-2) elements of the second super-diagonal of U.

           IPIV

                     IPIV is INTEGER array, dimension (N)
                     The pivot indices; for 1 <= i <= n, row i of the matrix was
                     interchanged with row IPIV(i).  IPIV(i) will always be either
                     i or i+1; IPIV(i) = i indicates a row interchange was not
                     required.

           B

                     B is REAL array, dimension (LDB,NRHS)
                     On entry, the matrix of right hand side vectors B.
                     On exit, B is overwritten by the solution vectors X.

           LDB

                     LDB is INTEGER
                     The leading dimension of the array B.  LDB >= max(1,N).

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

   subroutine zgtts2 (integer itrans, integer n, integer nrhs, complex*16, dimension( * ) dl, complex*16,
       dimension( * ) d, complex*16, dimension( * ) du, complex*16, dimension( * ) du2, integer, dimension( * )
       ipiv, complex*16, dimension( ldb, * ) b, integer ldb)
       ZGTTS2 solves a system of linear equations with a tridiagonal matrix using the LU factorization computed
       by sgttrf.

       Purpose:

            ZGTTS2 solves one of the systems of equations
               A * X = B,  A**T * X = B,  or  A**H * X = B,
            with a tridiagonal matrix A using the LU factorization computed
            by ZGTTRF.

       Parameters
           ITRANS

                     ITRANS is INTEGER
                     Specifies the form of the system of equations.
                     = 0:  A * X = B     (No transpose)
                     = 1:  A**T * X = B  (Transpose)
                     = 2:  A**H * X = B  (Conjugate transpose)

           N

                     N is INTEGER
                     The order of the matrix A.

           NRHS

                     NRHS is INTEGER
                     The number of right hand sides, i.e., the number of columns
                     of the matrix B.  NRHS >= 0.

           DL

                     DL is COMPLEX*16 array, dimension (N-1)
                     The (n-1) multipliers that define the matrix L from the
                     LU factorization of A.

           D

                     D is COMPLEX*16 array, dimension (N)
                     The n diagonal elements of the upper triangular matrix U from
                     the LU factorization of A.

           DU

                     DU is COMPLEX*16 array, dimension (N-1)
                     The (n-1) elements of the first super-diagonal of U.

           DU2

                     DU2 is COMPLEX*16 array, dimension (N-2)
                     The (n-2) elements of the second super-diagonal of U.

           IPIV

                     IPIV is INTEGER array, dimension (N)
                     The pivot indices; for 1 <= i <= n, row i of the matrix was
                     interchanged with row IPIV(i).  IPIV(i) will always be either
                     i or i+1; IPIV(i) = i indicates a row interchange was not
                     required.

           B

                     B is COMPLEX*16 array, dimension (LDB,NRHS)
                     On entry, the matrix of right hand side vectors B.
                     On exit, B is overwritten by the solution vectors X.

           LDB

                     LDB is INTEGER
                     The leading dimension of the array B.  LDB >= max(1,N).

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

Author

       Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0                              Tue Jan 28 2025 00:54:31                                    gtts2(3)