Provided by: libck-dev_0.7.2-5ubuntu1_amd64 

NAME
CK_ELIDE_PROTOTYPE, CK_ELIDE_LOCK_ADAPTIVE, CK_ELIDE_UNLOCK_ADAPTIVE, CK_ELIDE_LOCK, CK_ELIDE_UNLOCK,
CK_ELIDE_TRYLOCK_PROTOTYPE, CK_ELIDE_TRYLOCK — lock elision wrappers
LIBRARY
Concurrency Kit (libck, -lck)
SYNOPSIS
#include <ck_elide.h>
ck_elide_stat_t stat = CK_ELIDE_STAT_INITIALIZER;
void
ck_elide_stat_init(ck_elide_stat_t *);
struct ck_elide_config config = CK_ELIDE_CONFIG_DEFAULT_INITIALIZER;
struct ck_elide_config {
unsigned short skip_busy;
short retry_busy;
unsigned short skip_other;
short retry_other;
unsigned short skip_conflict;
short retry_conflict;
};
CK_ELIDE_PROTOTYPE(NAME, TYPE, LOCK_PREDICATE, LOCK_FUNCTION, UNLOCK_PREDICATE, UNLOCK_FUNCTION);
CK_ELIDE_LOCK_ADAPTIVE(NAME, ck_elide_stat_t *, struct ck_elide_config *, TYPE *);
CK_ELIDE_UNLOCK_ADAPTIVE(NAME, ck_elide_stat_t *, TYPE *);
CK_ELIDE_LOCK(NAME, TYPE *);
CK_ELIDE_UNLOCK(NAME, TYPE *);
CK_ELIDE_TRYLOCK_PROTOTYPE(NAME, TYPE, LOCK_PREDICATE, TRYLOCK_FUNCTION);
DESCRIPTION
These macros implement lock elision wrappers for a user-specified single-argument lock interface. The
wrappers will attempt to elide lock acquisition, allowing concurrent execution of critical sections that
do not issue conflicting memory operations. If any threads have successfully elided a lock acquisition,
conflicting memory operations will roll-back any side-effects of the critical section and force every
thread to retry the lock acquisition regularly.
CK_ELIDE_LOCK(), CK_ELIDE_UNLOCK(), CK_ELIDE_LOCK_ADAPTIVE(), and CK_ELIDE_UNLOCK_ADAPTIVE() macros
require a previous CK_ELIDE_PROTOTYPE() with the same NAME. Elision is attempted if the LOCK_PREDICATE
function returns false. If LOCK_PREDICATE returns true then elision is aborted and LOCK_FUNCTION is
executed instead. If any threads are in an elided critical section, LOCK_FUNCTION must force them to
rollback through a conflicting memory operation. The UNLOCK_PREDICATE function must return true if the
lock is acquired by the caller, meaning that the lock was not successfully elided. If UNLOCK_PREDICATE
returns true, then the UNLOCK_FUNCTION is executed. If RTM is unsupported (no CK_F_PR_RTM macro) then
CK_ELIDE_LOCK() and CK_ELIDE_LOCK_ADAPTIVE() will immediately call LOCK_FUNCTION(). CK_ELIDE_UNLOCK()
and CK_ELIDE_UNLOCK_ADAPTIVE() will immediately call UNLOCK_FUNCTION().
CK_ELIDE_TRYLOCK() requires a previous CK_ELIDE_TRYLOCK_PROTOTYPE() with the same name. Elision is
attempted if the LOCK_PREDICATE function returns false. If LOCK_PREDICATE returns true or if elision
fails then the operation is aborted. If RTM is unsupported (no CK_F_PR_RTM macro) then CK_ELIDE_TRYLOCK()
will immediately call TRYLOCK_FUNCTION().
CK_ELIDE_LOCK_ADAPTIVE() and CK_ELIDE_UNLOCK_ADAPTIVE() will adapt the elision behavior associated with
lock operations according to the run-time behavior of the program. This behavior is defined by the
ck_elide_config structure pointer passed to CK_ELIDE_LOCK_ADAPTIVE(). A thread-local ck_elide_stat
structure must be passed to both CK_ELIDE_LOCK_ADAPTIVE() and CK_ELIDE_UNLOCK_ADAPTIVE(). This structure
is expected to be unique for different workloads, may not be re-used in recursive acquisitions and must
match the lifetime of the lock it is associated with. It is safe to mix adaptive calls with best-effort
calls.
Both ck_spinlock.h and ck_rwlock.h define ck_elide wrappers under the ck_spinlock and ck_rwlock
namespace, respectively.
EXAMPLES
This example utilizes built-in lock elision facilities in ck_rwlock and ck_spinlock.
#include <ck_rwlock.h>
#include <ck_spinlock.h>
static ck_rwlock_t rw = CK_RWLOCK_INITIALIZER;
static struct ck_elide_config rw_config =
CK_ELIDE_CONFIG_DEFAULT_INITIALIZER;
static __thread ck_elide_stat_t rw_stat =
CK_ELIDE_STAT_INITIALIZER;
static ck_spinlock_t spinlock = CK_SPINLOCK_INITIALIZER;
static struct ck_elide_config spinlock_config =
CK_ELIDE_CONFIG_DEFAULT_INITIALIZER;
static __thread ck_elide_stat_t spinlock_stat =
CK_ELIDE_STAT_INITIALIZER;
void
function(void)
{
/* Lock-unlock write-side lock in weak best-effort manner. */
CK_ELIDE_LOCK(ck_rwlock_write, &rw);
CK_ELIDE_UNLOCK(ck_rwlock_write, &rw);
/* Attempt to acquire the write-side lock. */
if (CK_ELIDE_TRYLOCK(ck_rwlock_write, &rw) == true)
CK_ELIDE_UNLOCK(ck_rwlock_write, &rw);
/* Lock-unlock read-side lock in weak best-effort manner. */
CK_ELIDE_LOCK(ck_rwlock_read, &rw);
CK_ELIDE_UNLOCK(ck_rwlock_read, &rw);
/* Attempt to acquire the read-side lock. */
if (CK_ELIDE_TRYLOCK(ck_rwlock_read, &rw) == true)
CK_ELIDE_UNLOCK(ck_rwlock_read, &rw);
/* Lock-unlock write-side lock in an adaptive manner. */
CK_ELIDE_LOCK_ADAPTIVE(ck_rwlock_write, &rw_stat,
&rw_config, &rw);
CK_ELIDE_UNLOCK_ADAPTIVE(ck_rwlock_write, &rw_stat,
&rw_config, &rw);
/* Lock-unlock read-side lock in an adaptive manner. */
CK_ELIDE_LOCK_ADAPTIVE(ck_rwlock_read, &rw_stat,
&rw_config, &rw);
CK_ELIDE_UNLOCK_ADAPTIVE(ck_rwlock_read, &rw_stat,
&rw_config, &rw);
/* Lock-unlock spinlock in weak best-effort manner. */
CK_ELIDE_LOCK(ck_spinlock, &spinlock);
CK_ELIDE_UNLOCK(ck_spinlock, &spinlock);
/* Attempt to acquire the lock. */
if (CK_ELIDE_TRYLOCK(ck_spinlock, &lock) == true)
CK_ELIDE_UNLOCK(ck_spinlock, &spinlock);
/* Lock-unlock spinlock in an adaptive manner. */
CK_ELIDE_LOCK_ADAPTIVE(ck_spinlock, &spinlock_stat,
&spinlock_config, &spinlock);
CK_ELIDE_UNLOCK_ADAPTIVE(ck_spinlock, &spinlock_stat,
&spinlock_config, &spinlock);
}
In this example, user-defined locking functions are provided an elision implementation.
/* Assume lock_t has been previously defined. */
#include <ck_elide.h>
/*
* This function returns true if the lock is unavailable at the time
* it was called or false if the lock is available.
*/
bool is_locked(lock_t *);
/*
* This function acquires the supplied lock.
*/
void lock(lock_t *);
/*
* This function releases the lock.
*/
void unlock(lock_t *);
CK_ELIDE_PROTOTYPE(my_lock, lock_t, is_locked, lock, is_locked, unlock)
static lock_t lock;
void
function(void)
{
CK_ELIDE_LOCK(my_lock, &lock);
CK_ELIDE_UNLOCK(my_lock, &lock);
}
SEE ALSO
ck_rwlock(3), ck_spinlock(3)
Ravi Rajwar and James R. Goodman. 2001. Speculative lock elision: enabling highly concurrent
multithreaded execution. In Proceedings of the 34th annual ACM/IEEE international symposium on
Microarchitecture (MICRO 34). IEEE Computer Society, Washington, DC, USA, 294-305.
Additional information available at http://en.wikipedia.org/wiki/Transactional_Synchronization_Extensions
and http://concurrencykit.org/
July 13, 2013. ck_elide(3)