Provided by: mlpack-bin_4.5.1-1build2_amd64 

NAME
mlpack_linear_regression - simple linear regression and prediction
SYNOPSIS
mlpack_linear_regression [-m unknown] [-l double] [-T unknown] [-t unknown] [-r unknown] [-V bool] [-M unknown] [-o unknown] [-h -v]
DESCRIPTION
An implementation of simple linear regression and simple ridge regression using ordinary least squares.
This solves the problem
y = X * b + e
where X (specified by '--training_file (-t)') and y (specified either as the last column of the input
matrix '--training_file (-t)' or via the ’--training_responses_file (-r)' parameter) are known and b is
the desired variable. If the covariance matrix (X'X) is not invertible, or if the solution is
overdetermined, then specify a Tikhonov regularization constant (with '--lambda (-l)') greater than 0,
which will regularize the covariance matrix to make it invertible. The calculated b may be saved with the
’--output_predictions_file (-o)' output parameter.
Optionally, the calculated value of b is used to predict the responses for another matrix X' (specified
by the '--test_file (-T)' parameter):
y' = X' * b
and the predicted responses y' may be saved with the ’--output_predictions_file (-o)' output parameter.
This type of regression is related to least-angle regression, which mlpack implements as the 'lars'
program.
For example, to run a linear regression on the dataset 'X.csv' with responses ’y.csv', saving the trained
model to 'lr_model.bin', the following command could be used:
$ mlpack_linear_regression --training_file X.csv --training_responses_file y.csv --output_model_file
lr_model.bin
Then, to use 'lr_model.bin' to predict responses for a test set 'X_test.csv', saving the predictions to
'X_test_responses.csv', the following command could be used:
$ mlpack_linear_regression --input_model_file lr_model.bin --test_file X_test.csv
--output_predictions_file X_test_responses.csv
OPTIONAL INPUT OPTIONS
--help (-h) [bool]
Default help info.
--info [string]
Print help on a specific option. Default value ''.
--input_model_file (-m) [unknown]
Existing LinearRegression model to use.
--lambda (-l) [double]
Tikhonov regularization for ridge regression. If 0, the method reduces to linear regression.
Default value 0.
--test_file (-T) [unknown]
Matrix containing X' (test regressors).
--training_file (-t) [unknown]
Matrix containing training set X (regressors).
--training_responses_file (-r) [unknown]
Optional vector containing y (responses). If not given, the responses are assumed to be the last
row of the input file.
--verbose (-v) [bool]
Display informational messages and the full list of parameters and timers at the end of execution.
--version (-V) [bool]
Display the version of mlpack.
OPTIONAL OUTPUT OPTIONS
--output_model_file (-M) [unknown]
Output LinearRegression model.
--output_predictions_file (-o) [unknown]
If --test_file is specified, this matrix is where the predicted responses will be saved.
ADDITIONAL INFORMATION
For further information, including relevant papers, citations, and theory, consult the documentation
found at http://www.mlpack.org or included with your distribution of mlpack.
mlpack-4.5.1 29 January 2025 mlpack_linear_regression(1)