Provided by: dcmtk_3.6.7-9.1build4_amd64 bug

NAME

       dcmdjpeg - Decode JPEG-compressed DICOM file

SYNOPSIS

       dcmdjpeg [options] dcmfile-in dcmfile-out

DESCRIPTION

       The  dcmdjpeg utility reads a JPEG-compressed DICOM image (dcmfile-in), decompresses the JPEG data (i. e.
       conversion to a native DICOM transfer syntax) and writes the converted image to an output file  (dcmfile-
       out).

PARAMETERS

       dcmfile-in   DICOM input filename to be converted

       dcmfile-out  DICOM output filename

OPTIONS

   general options
         -h    --help
                 print this help text and exit

               --version
                 print version information and exit

               --arguments
                 print expanded command line arguments

         -q    --quiet
                 quiet mode, print no warnings and errors

         -v    --verbose
                 verbose mode, print processing details

         -d    --debug
                 debug mode, print debug information

         -ll   --log-level  [l]evel: string constant
                 (fatal, error, warn, info, debug, trace)
                 use level l for the logger

         -lc   --log-config  [f]ilename: string
                 use config file f for the logger

   input options
       input file format:

         +f    --read-file
                 read file format or data set (default)

         +fo   --read-file-only
                 read file format only

         -f    --read-dataset
                 read data set without file meta information

         # This option allows one to decompress JPEG compressed DICOM objects that
         # have been stored as dataset without meta-header. Such a thing should
         # not exist since the transfer syntax cannot be reliably determined,
         # without meta-header but unfortunately it does.

   processing options
       color space conversion:

         +cp   --conv-photometric
                 convert if YCbCr photometric interpretation (default)

         # If the compressed image uses YBR_FULL or YBR_FULL_422 photometric
         # interpretation, convert to RGB during decompression.

         +cl   --conv-lossy
                 convert YCbCr to RGB if lossy JPEG

         # If the compressed image is encoded in lossy JPEG, assume YCbCr
         # color model and convert to RGB.

         +cg   --conv-guess
                 convert to RGB if YCbCr is guessed by library

         # If the underlying JPEG library 'guesses' the color space of the
         # compressed image to be YCbCr, convert to RGB.

         +cgl  --conv-guess-lossy
                 convert to RGB if lossy JPEG and YCbCr is
                 guessed by the underlying JPEG library

         # If the compressed image is encoded in lossy JPEG and the underlying
         # JPEG library 'guesses' the color space to be YCbCr, convert to RGB.

         +ca   --conv-always
                 always convert YCbCr to RGB

         # If the compressed image is a color image, assume YCbCr color model
         # and convert to RGB.

         +cn   --conv-never
                 never convert YCbCr to RGB

         # Never convert color space from YCbCr to RGB during decompression.
         # Note that a conversion from YBR_FULL_422 to YBR_FULL will still take
         # place if the source images has been compressed with subsampling.

       planar configuration:

         +pa   --planar-auto
                 automatically determine planar configuration
                 from SOP class and color space (default)

         # If the compressed image is a color image, store in color-by-plane
         # planar configuration if required by the SOP class and photometric
         # interpretation. Hardcopy Color images are always stored color-by-
         # plane, and the revised Ultrasound image objects are stored color-by-
         # plane if the color model is YBR_FULL.  Everything else is stored
         # color-by-pixel.

         +px   --color-by-pixel
                 always store color-by-pixel

         # If the compressed image is a color image, store in color-by-pixel
         # planar configuration.

         +pl   --color-by-plane
                 always store color-by-plane

         # If the compressed image is a color image, store in color-by-plane
         # planar configuration.

       SOP Instance UID:

         +ud   --uid-default
                 keep same SOP Instance UID (default)

         #  Never assigns a new SOP instance UID.

         +ua   --uid-always
                 always assign new UID

         # Always assigns a new SOP instance UID.

       workaround options for incorrect JPEG encodings:

         +w6   --workaround-pred6
                 enable workaround for JPEG lossless images
                 with overflow in predictor 6

         # DICOM images with 16 bits/pixel have been observed 'in the wild'
         # that are compressed with lossless JPEG and need special handling
         # because the encoder produced an 16-bit integer overflow in predictor
         # 6, which needs to be compensated (reproduced) during decompression.
         # This flag enables a correct decompression of such faulty images, but
         # at the same time will cause an incorrect decompression of correctly
         # compressed images. Use with care.

         +wi   --workaround-incpl
                 enable workaround for incomplete JPEG data

         # This option causes dcmjpeg to ignore incomplete JPEG data
         # at the end of a compressed fragment and to start decompressing
         # the next frame from the next fragment (if any). This permits
         # images with incomplete JPEG data to be decoded.

         +wc   --workaround-cornell
                 enable workaround for 16-bit JPEG lossless
                 Cornell images with Huffman table overflow

         # One of the first open-source implementations of lossless JPEG
         # compression, the 'Cornell' library, has a well-known bug that leads
         # to invalid values in the Huffmann table when images with 16 bit/sample
         # are compressed. This flag enables a workaround that permits such
         # images to be decoded correctly..fi

   output options
       output file format:

         +F    --write-file
                 write file format (default)

         -F    --write-dataset
                 write data set without file meta information

       output transfer syntax:

         +te   --write-xfer-little
                 write with explicit VR little endian (default)

         +tb   --write-xfer-big
                 write with explicit VR big endian TS

         +ti   --write-xfer-implicit
                 write with implicit VR little endian TS

       post-1993 value representations:

         +u    --enable-new-vr
                 enable support for new VRs (UN/UT) (default)

         -u    --disable-new-vr
                 disable support for new VRs, convert to OB

       group length encoding:

         +g=   --group-length-recalc
                 recalculate group lengths if present (default)

         +g    --group-length-create
                 always write with group length elements

         -g    --group-length-remove
                 always write without group length elements

       length encoding in sequences and items:

         +e    --length-explicit
                 write with explicit lengths (default)

         -e    --length-undefined
                 write with undefined lengths

       data set trailing padding (not with --write-dataset):

         -p=   --padding-retain
                 do not change padding (default if not --write-dataset)

         -p    --padding-off
                 no padding (implicit if --write-dataset)

         +p    --padding-create  [f]ile-pad [i]tem-pad: integer
                 align file on multiple of f bytes
                 and items on multiple of i bytes

TRANSFER SYNTAXES

       dcmdjpeg supports the following transfer syntaxes for input (dcmfile-in):

       LittleEndianImplicitTransferSyntax             1.2.840.10008.1.2
       LittleEndianExplicitTransferSyntax             1.2.840.10008.1.2.1
       DeflatedExplicitVRLittleEndianTransferSyntax   1.2.840.10008.1.2.1.99 (*)
       BigEndianExplicitTransferSyntax                1.2.840.10008.1.2.2
       JPEGProcess1TransferSyntax                     1.2.840.10008.1.2.4.50
       JPEGProcess2_4TransferSyntax                   1.2.840.10008.1.2.4.51
       JPEGProcess6_8TransferSyntax                   1.2.840.10008.1.2.4.53
       JPEGProcess10_12TransferSyntax                 1.2.840.10008.1.2.4.55
       JPEGProcess14TransferSyntax                    1.2.840.10008.1.2.4.57
       JPEGProcess14SV1TransferSyntax                 1.2.840.10008.1.2.4.70

       (*) if compiled with zlib support enabled

       dcmdjpeg supports the following transfer syntaxes for output (dcmfile-out):

       LittleEndianImplicitTransferSyntax             1.2.840.10008.1.2
       LittleEndianExplicitTransferSyntax             1.2.840.10008.1.2.1
       BigEndianExplicitTransferSyntax                1.2.840.10008.1.2.2

LOGGING

       The  level  of logging output of the various command line tools and underlying libraries can be specified
       by the user. By default, only errors and warnings are written to the standard error stream. Using  option
       --verbose also informational messages like processing details are reported. Option --debug can be used to
       get  more  details  on  the  internal  activity, e.g. for debugging purposes. Other logging levels can be
       selected using option --log-level. In --quiet mode only fatal errors are reported. In  such  very  severe
       error  events,  the application will usually terminate. For more details on the different logging levels,
       see documentation of module 'oflog'.

       In case the logging output should be written to file (optionally with logfile rotation), to syslog (Unix)
       or the event log (Windows) option --log-config can be used.  This  configuration  file  also  allows  for
       directing only certain messages to a particular output stream and for filtering certain messages based on
       the  module  or  application  where  they  are  generated.  An  example configuration file is provided in
       <etcdir>/logger.cfg.

COMMAND LINE

       All command line tools use the following notation for parameters: square brackets enclose optional values
       (0-1), three trailing dots indicate that multiple values are allowed (1-n), a combination of both means 0
       to n values.

       Command line options are distinguished from parameters by  a  leading  '+'  or  '-'  sign,  respectively.
       Usually,  order  and  position  of  command  line  options are arbitrary (i.e. they can appear anywhere).
       However, if options are mutually exclusive the rightmost appearance is used. This  behavior  conforms  to
       the standard evaluation rules of common Unix shells.

       In  addition,  one  or  more command files can be specified using an '@' sign as a prefix to the filename
       (e.g. @command.txt). Such a command argument is replaced by the content of the  corresponding  text  file
       (multiple  whitespaces  are treated as a single separator unless they appear between two quotation marks)
       prior to any further evaluation. Please note that a command file cannot  contain  another  command  file.
       This  simple but effective approach allows one to summarize common combinations of options/parameters and
       avoids longish and confusing command lines (an example is provided in file <datadir>/dumppat.txt).

ENVIRONMENT

       The dcmdjpeg utility  will  attempt  to  load  DICOM  data  dictionaries  specified  in  the  DCMDICTPATH
       environment  variable.  By  default,  i.e.  if  the DCMDICTPATH environment variable is not set, the file
       <datadir>/dicom.dic will be loaded unless the dictionary is  built  into  the  application  (default  for
       Windows).

       The  default  behavior  should  be  preferred  and  the  DCMDICTPATH  environment variable only used when
       alternative data dictionaries are required. The DCMDICTPATH environment variable has the same  format  as
       the  Unix  shell  PATH  variable in that a colon (':') separates entries. On Windows systems, a semicolon
       (';') is used as a separator. The data dictionary code will attempt to load each file  specified  in  the
       DCMDICTPATH environment variable. It is an error if no data dictionary can be loaded.

SEE ALSO

       dcmcjpeg(1)

COPYRIGHT

       Copyright (C) 2001-2022 by OFFIS e.V., Escherweg 2, 26121 Oldenburg, Germany.

Version 3.6.7                               Mon Apr 15 2024 18:40:35                                 dcmdjpeg(1)