Provided by: liblapack-doc_3.10.0-2ubuntu1_all 
      
    
NAME
       complexGTcomputational - complex
SYNOPSIS
   Functions
       subroutine cgtcon (NORM, N, DL, D, DU, DU2, IPIV, ANORM, RCOND, WORK, INFO)
           CGTCON
       subroutine cgtrfs (TRANS, N, NRHS, DL, D, DU, DLF, DF, DUF, DU2, IPIV, B, LDB, X, LDX, FERR, BERR, WORK,
           RWORK, INFO)
           CGTRFS
       subroutine cgttrf (N, DL, D, DU, DU2, IPIV, INFO)
           CGTTRF
       subroutine cgttrs (TRANS, N, NRHS, DL, D, DU, DU2, IPIV, B, LDB, INFO)
           CGTTRS
       subroutine cgtts2 (ITRANS, N, NRHS, DL, D, DU, DU2, IPIV, B, LDB)
           CGTTS2 solves a system of linear equations with a tridiagonal matrix using the LU factorization
           computed by sgttrf.
Detailed Description
       This is the group of complex computational functions for GT matrices
Function Documentation
   subroutine cgtcon (character NORM, integer N, complex, dimension( * ) DL, complex, dimension( * ) D, complex,
       dimension( * ) DU, complex, dimension( * ) DU2, integer, dimension( * ) IPIV, real ANORM, real RCOND,
       complex, dimension( * ) WORK, integer INFO)
       CGTCON
       Purpose:
            CGTCON estimates the reciprocal of the condition number of a complex
            tridiagonal matrix A using the LU factorization as computed by
            CGTTRF.
            An estimate is obtained for norm(inv(A)), and the reciprocal of the
            condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
       Parameters
           NORM
                     NORM is CHARACTER*1
                     Specifies whether the 1-norm condition number or the
                     infinity-norm condition number is required:
                     = '1' or 'O':  1-norm;
                     = 'I':         Infinity-norm.
           N
                     N is INTEGER
                     The order of the matrix A.  N >= 0.
           DL
                     DL is COMPLEX array, dimension (N-1)
                     The (n-1) multipliers that define the matrix L from the
                     LU factorization of A as computed by CGTTRF.
           D
                     D is COMPLEX array, dimension (N)
                     The n diagonal elements of the upper triangular matrix U from
                     the LU factorization of A.
           DU
                     DU is COMPLEX array, dimension (N-1)
                     The (n-1) elements of the first superdiagonal of U.
           DU2
                     DU2 is COMPLEX array, dimension (N-2)
                     The (n-2) elements of the second superdiagonal of U.
           IPIV
                     IPIV is INTEGER array, dimension (N)
                     The pivot indices; for 1 <= i <= n, row i of the matrix was
                     interchanged with row IPIV(i).  IPIV(i) will always be either
                     i or i+1; IPIV(i) = i indicates a row interchange was not
                     required.
           ANORM
                     ANORM is REAL
                     If NORM = '1' or 'O', the 1-norm of the original matrix A.
                     If NORM = 'I', the infinity-norm of the original matrix A.
           RCOND
                     RCOND is REAL
                     The reciprocal of the condition number of the matrix A,
                     computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an
                     estimate of the 1-norm of inv(A) computed in this routine.
           WORK
                     WORK is COMPLEX array, dimension (2*N)
           INFO
                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value
       Author
           Univ. of Tennessee
           Univ. of California Berkeley
           Univ. of Colorado Denver
           NAG Ltd.
   subroutine cgtrfs (character TRANS, integer N, integer NRHS, complex, dimension( * ) DL, complex, dimension(
       * ) D, complex, dimension( * ) DU, complex, dimension( * ) DLF, complex, dimension( * ) DF, complex,
       dimension( * ) DUF, complex, dimension( * ) DU2, integer, dimension( * ) IPIV, complex, dimension( ldb, *
       ) B, integer LDB, complex, dimension( ldx, * ) X, integer LDX, real, dimension( * ) FERR, real,
       dimension( * ) BERR, complex, dimension( * ) WORK, real, dimension( * ) RWORK, integer INFO)
       CGTRFS
       Purpose:
            CGTRFS improves the computed solution to a system of linear
            equations when the coefficient matrix is tridiagonal, and provides
            error bounds and backward error estimates for the solution.
       Parameters
           TRANS
                     TRANS is CHARACTER*1
                     Specifies the form of the system of equations:
                     = 'N':  A * X = B     (No transpose)
                     = 'T':  A**T * X = B  (Transpose)
                     = 'C':  A**H * X = B  (Conjugate transpose)
           N
                     N is INTEGER
                     The order of the matrix A.  N >= 0.
           NRHS
                     NRHS is INTEGER
                     The number of right hand sides, i.e., the number of columns
                     of the matrix B.  NRHS >= 0.
           DL
                     DL is COMPLEX array, dimension (N-1)
                     The (n-1) subdiagonal elements of A.
           D
                     D is COMPLEX array, dimension (N)
                     The diagonal elements of A.
           DU
                     DU is COMPLEX array, dimension (N-1)
                     The (n-1) superdiagonal elements of A.
           DLF
                     DLF is COMPLEX array, dimension (N-1)
                     The (n-1) multipliers that define the matrix L from the
                     LU factorization of A as computed by CGTTRF.
           DF
                     DF is COMPLEX array, dimension (N)
                     The n diagonal elements of the upper triangular matrix U from
                     the LU factorization of A.
           DUF
                     DUF is COMPLEX array, dimension (N-1)
                     The (n-1) elements of the first superdiagonal of U.
           DU2
                     DU2 is COMPLEX array, dimension (N-2)
                     The (n-2) elements of the second superdiagonal of U.
           IPIV
                     IPIV is INTEGER array, dimension (N)
                     The pivot indices; for 1 <= i <= n, row i of the matrix was
                     interchanged with row IPIV(i).  IPIV(i) will always be either
                     i or i+1; IPIV(i) = i indicates a row interchange was not
                     required.
           B
                     B is COMPLEX array, dimension (LDB,NRHS)
                     The right hand side matrix B.
           LDB
                     LDB is INTEGER
                     The leading dimension of the array B.  LDB >= max(1,N).
           X
                     X is COMPLEX array, dimension (LDX,NRHS)
                     On entry, the solution matrix X, as computed by CGTTRS.
                     On exit, the improved solution matrix X.
           LDX
                     LDX is INTEGER
                     The leading dimension of the array X.  LDX >= max(1,N).
           FERR
                     FERR is REAL array, dimension (NRHS)
                     The estimated forward error bound for each solution vector
                     X(j) (the j-th column of the solution matrix X).
                     If XTRUE is the true solution corresponding to X(j), FERR(j)
                     is an estimated upper bound for the magnitude of the largest
                     element in (X(j) - XTRUE) divided by the magnitude of the
                     largest element in X(j).  The estimate is as reliable as
                     the estimate for RCOND, and is almost always a slight
                     overestimate of the true error.
           BERR
                     BERR is REAL array, dimension (NRHS)
                     The componentwise relative backward error of each solution
                     vector X(j) (i.e., the smallest relative change in
                     any element of A or B that makes X(j) an exact solution).
           WORK
                     WORK is COMPLEX array, dimension (2*N)
           RWORK
                     RWORK is REAL array, dimension (N)
           INFO
                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value
       Internal Parameters:
             ITMAX is the maximum number of steps of iterative refinement.
       Author
           Univ. of Tennessee
           Univ. of California Berkeley
           Univ. of Colorado Denver
           NAG Ltd.
   subroutine cgttrf (integer N, complex, dimension( * ) DL, complex, dimension( * ) D, complex, dimension( * )
       DU, complex, dimension( * ) DU2, integer, dimension( * ) IPIV, integer INFO)
       CGTTRF
       Purpose:
            CGTTRF computes an LU factorization of a complex tridiagonal matrix A
            using elimination with partial pivoting and row interchanges.
            The factorization has the form
               A = L * U
            where L is a product of permutation and unit lower bidiagonal
            matrices and U is upper triangular with nonzeros in only the main
            diagonal and first two superdiagonals.
       Parameters
           N
                     N is INTEGER
                     The order of the matrix A.
           DL
                     DL is COMPLEX array, dimension (N-1)
                     On entry, DL must contain the (n-1) sub-diagonal elements of
                     A.
                     On exit, DL is overwritten by the (n-1) multipliers that
                     define the matrix L from the LU factorization of A.
           D
                     D is COMPLEX array, dimension (N)
                     On entry, D must contain the diagonal elements of A.
                     On exit, D is overwritten by the n diagonal elements of the
                     upper triangular matrix U from the LU factorization of A.
           DU
                     DU is COMPLEX array, dimension (N-1)
                     On entry, DU must contain the (n-1) super-diagonal elements
                     of A.
                     On exit, DU is overwritten by the (n-1) elements of the first
                     super-diagonal of U.
           DU2
                     DU2 is COMPLEX array, dimension (N-2)
                     On exit, DU2 is overwritten by the (n-2) elements of the
                     second super-diagonal of U.
           IPIV
                     IPIV is INTEGER array, dimension (N)
                     The pivot indices; for 1 <= i <= n, row i of the matrix was
                     interchanged with row IPIV(i).  IPIV(i) will always be either
                     i or i+1; IPIV(i) = i indicates a row interchange was not
                     required.
           INFO
                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -k, the k-th argument had an illegal value
                     > 0:  if INFO = k, U(k,k) is exactly zero. The factorization
                           has been completed, but the factor U is exactly
                           singular, and division by zero will occur if it is used
                           to solve a system of equations.
       Author
           Univ. of Tennessee
           Univ. of California Berkeley
           Univ. of Colorado Denver
           NAG Ltd.
   subroutine cgttrs (character TRANS, integer N, integer NRHS, complex, dimension( * ) DL, complex, dimension(
       * ) D, complex, dimension( * ) DU, complex, dimension( * ) DU2, integer, dimension( * ) IPIV, complex,
       dimension( ldb, * ) B, integer LDB, integer INFO)
       CGTTRS
       Purpose:
            CGTTRS solves one of the systems of equations
               A * X = B,  A**T * X = B,  or  A**H * X = B,
            with a tridiagonal matrix A using the LU factorization computed
            by CGTTRF.
       Parameters
           TRANS
                     TRANS is CHARACTER*1
                     Specifies the form of the system of equations.
                     = 'N':  A * X = B     (No transpose)
                     = 'T':  A**T * X = B  (Transpose)
                     = 'C':  A**H * X = B  (Conjugate transpose)
           N
                     N is INTEGER
                     The order of the matrix A.
           NRHS
                     NRHS is INTEGER
                     The number of right hand sides, i.e., the number of columns
                     of the matrix B.  NRHS >= 0.
           DL
                     DL is COMPLEX array, dimension (N-1)
                     The (n-1) multipliers that define the matrix L from the
                     LU factorization of A.
           D
                     D is COMPLEX array, dimension (N)
                     The n diagonal elements of the upper triangular matrix U from
                     the LU factorization of A.
           DU
                     DU is COMPLEX array, dimension (N-1)
                     The (n-1) elements of the first super-diagonal of U.
           DU2
                     DU2 is COMPLEX array, dimension (N-2)
                     The (n-2) elements of the second super-diagonal of U.
           IPIV
                     IPIV is INTEGER array, dimension (N)
                     The pivot indices; for 1 <= i <= n, row i of the matrix was
                     interchanged with row IPIV(i).  IPIV(i) will always be either
                     i or i+1; IPIV(i) = i indicates a row interchange was not
                     required.
           B
                     B is COMPLEX array, dimension (LDB,NRHS)
                     On entry, the matrix of right hand side vectors B.
                     On exit, B is overwritten by the solution vectors X.
           LDB
                     LDB is INTEGER
                     The leading dimension of the array B.  LDB >= max(1,N).
           INFO
                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -k, the k-th argument had an illegal value
       Author
           Univ. of Tennessee
           Univ. of California Berkeley
           Univ. of Colorado Denver
           NAG Ltd.
   subroutine cgtts2 (integer ITRANS, integer N, integer NRHS, complex, dimension( * ) DL, complex, dimension( *
       ) D, complex, dimension( * ) DU, complex, dimension( * ) DU2, integer, dimension( * ) IPIV, complex,
       dimension( ldb, * ) B, integer LDB)
       CGTTS2 solves a system of linear equations with a tridiagonal matrix using the LU factorization computed
       by sgttrf.
       Purpose:
            CGTTS2 solves one of the systems of equations
               A * X = B,  A**T * X = B,  or  A**H * X = B,
            with a tridiagonal matrix A using the LU factorization computed
            by CGTTRF.
       Parameters
           ITRANS
                     ITRANS is INTEGER
                     Specifies the form of the system of equations.
                     = 0:  A * X = B     (No transpose)
                     = 1:  A**T * X = B  (Transpose)
                     = 2:  A**H * X = B  (Conjugate transpose)
           N
                     N is INTEGER
                     The order of the matrix A.
           NRHS
                     NRHS is INTEGER
                     The number of right hand sides, i.e., the number of columns
                     of the matrix B.  NRHS >= 0.
           DL
                     DL is COMPLEX array, dimension (N-1)
                     The (n-1) multipliers that define the matrix L from the
                     LU factorization of A.
           D
                     D is COMPLEX array, dimension (N)
                     The n diagonal elements of the upper triangular matrix U from
                     the LU factorization of A.
           DU
                     DU is COMPLEX array, dimension (N-1)
                     The (n-1) elements of the first super-diagonal of U.
           DU2
                     DU2 is COMPLEX array, dimension (N-2)
                     The (n-2) elements of the second super-diagonal of U.
           IPIV
                     IPIV is INTEGER array, dimension (N)
                     The pivot indices; for 1 <= i <= n, row i of the matrix was
                     interchanged with row IPIV(i).  IPIV(i) will always be either
                     i or i+1; IPIV(i) = i indicates a row interchange was not
                     required.
           B
                     B is COMPLEX array, dimension (LDB,NRHS)
                     On entry, the matrix of right hand side vectors B.
                     On exit, B is overwritten by the solution vectors X.
           LDB
                     LDB is INTEGER
                     The leading dimension of the array B.  LDB >= max(1,N).
       Author
           Univ. of Tennessee
           Univ. of California Berkeley
           Univ. of Colorado Denver
           NAG Ltd.
Author
       Generated automatically by Doxygen for LAPACK from the source code.
Version 3.10.0                                   Wed Jan 12 2022                       complexGTcomputational(3)