Provided by: mlpack-bin_3.4.2-5ubuntu1_amd64 

NAME
mlpack_kfn - k-furthest-neighbors search
SYNOPSIS
mlpack_kfn [-a string] [-e double] [-m unknown] [-k int] [-l int] [-p double] [-q string] [-R bool] [-r string] [-s int] [-t string] [-D string] [-T string] [-V bool] [-d string] [-n string] [-M unknown] [-h -v]
DESCRIPTION
This program will calculate the k-furthest-neighbors of a set of points. You may specify a separate set
of reference points and query points, or just a reference set which will be used as both the reference
and query set.
For example, the following will calculate the 5 furthest neighbors of eachpoint in 'input.csv' and store
the distances in 'distances.csv' and the neighbors in 'neighbors.csv':
$ mlpack_kfn --k 5 --reference_file input.csv --distances_file distances.csv --neighbors_file
neighbors.csv
The output files are organized such that row i and column j in the neighbors output matrix corresponds to
the index of the point in the reference set which is the j'th furthest neighbor from the point in the
query set with index i. Row i and column j in the distances output file corresponds to the distance
between those two points.
OPTIONAL INPUT OPTIONS
--algorithm (-a) [string]
Type of neighbor search: 'naive', 'single_tree', 'dual_tree', 'greedy'. Default value 'dual_tree'.
--epsilon (-e) [double]
If specified, will do approximate furthest neighbor search with given relative error. Must be in
the range [0,1). Default value 0.
--help (-h) [bool]
Default help info.
--info [string]
Print help on a specific option. Default value ''.
--input_model_file (-m) [unknown]
Pre-trained kFN model.
--k (-k) [int]
Number of furthest neighbors to find. Default value 0.
--leaf_size (-l) [int]
Leaf size for tree building (used for kd-trees, vp trees, random projection trees, UB trees, R
trees, R* trees, X trees, Hilbert R trees, R+ trees, R++ trees, and octrees). Default value 20.
--percentage (-p) [double]
If specified, will do approximate furthest neighbor search. Must be in the range (0,1] (decimal
form). Resultant neighbors will be at least (p*100) % of the distance as the true furthest
neighbor. Default value 1.
--query_file (-q) [string]
Matrix containing query points (optional).
--random_basis (-R) [bool]
Before tree-building, project the data onto a random orthogonal basis.
--reference_file (-r) [string]
Matrix containing the reference dataset.
--seed (-s) [int]
Random seed (if 0, std::time(NULL) is used). Default value 0.
--tree_type (-t) [string]
Type of tree to use: 'kd', 'vp', 'rp', 'max-rp', 'ub', 'cover', 'r', 'r-star', 'x', 'ball',
'hilbert-r', 'r-plus', 'r-plus-plus', 'oct'. Default value 'kd'.
--true_distances_file (-D) [string]
Matrix of true distances to compute the effective error (average relative error) (it is printed
when -v is specified).
--true_neighbors_file (-T) [string]
Matrix of true neighbors to compute the recall (it is printed when -v is specified).
--verbose (-v) [bool]
Display informational messages and the full list of parameters and timers at the end of execution.
--version (-V) [bool]
Display the version of mlpack.
OPTIONAL OUTPUT OPTIONS
--distances_file (-d) [string]
Matrix to output distances into.
--neighbors_file (-n) [string]
Matrix to output neighbors into.
--output_model_file (-M) [unknown]
If specified, the kFN model will be output here.
ADDITIONAL INFORMATION
For further information, including relevant papers, citations, and theory, consult the documentation
found at http://www.mlpack.org or included with your distribution of mlpack.
mlpack-3.4.2 11 April 2022 mlpack_kfn(1)