Provided by: libnng-dev_1.10.1-1_amd64 

NAME
nng_device - message forwarding device
SYNOPSIS
#include <nng/nng.h>
int nng_device(nng_socket s1, nng_socket s2);
void nng_device_aio(nng_aio *aio, nng_socket s1, nng_socket s2);
DESCRIPTION
The nng_device() and nng_device_aio() functions forward messages received from one socket s1 to another
socket s2, and vice versa.
These functions are used to create forwarders, which can be used to create complex network topologies to
provide for improved horizontal scalability, reliability, and isolation.
Only raw mode sockets may be used with this function. These can be created using _raw forms of the
various socket constructors, such as nng_req0_open_raw().
The nng_device() function does not return until one of the sockets is closed. The nng_device_aio()
function returns immediately, and operates completely in the background.
Reflectors
One of the sockets passed may be an unopened socket initialized with the NNG_SOCKET_INITIALIZER special
value. If this is the case, then the other socket must be valid, and must use a protocol that is
bidirectional and can peer with itself (such as pair or bus.) In this case the device acts as a reflector
or loop-back device, where messages received from the valid socket are merely returned to the sender.
Forwarders
When both sockets are valid, then the result is a forwarder or proxy. In this case sockets s1 and s2 must
be compatible with each other, which is to say that they should represent the opposite halves of a two
protocol pattern, or both be the same protocol for a single protocol pattern. For example, if s1 is a pub
socket, then s2 must be a sub socket. Or, if s1 is a bus socket, then s2 must also be a bus socket.
Operation
The nng_device() function moves messages between the provided sockets.
When a protocol has a backtrace style header, routing information is present in the header of received
messages, and is copied to the header of the output bound message. The underlying raw mode protocols
supply the necessary header adjustments to add or remove routing headers as needed. This allows replies
to be returned to requesters, and responses to be routed back to surveyors.
The caller of these functions is required to close the sockets when the device is stopped.
Additionally, some protocols have a maximum time-to-live to protect against forwarding loops and
especially amplification loops. In these cases, the default limit (usually 8), ensures that messages will
self-terminate when they have passed through too many forwarders, protecting the network from unlimited
message amplification that can arise through misconfiguration. This is controlled via the NNG_OPT_MAXTTL
option.
Important
Not all protocols have support for guarding against forwarding loops, and even for those that do,
forwarding loops can be extremely detrimental to network performance.
Note
Devices (forwarders and reflectors) act in best-effort delivery mode only. If a message is received
from one socket that cannot be accepted by the other (due to backpressure or other issues), then the
message is discarded.
Tip
Use the request/reply pattern, which includes automatic retries by the requester, if reliable
delivery is needed.
RETURN VALUES
This function continues running, and only returns an appropriate error when one occurs, or if one of the
sockets is closed.
ERRORS
NNG_ECLOSED
At least one of the sockets is not open.
NNG_ENOMEM
Insufficient memory is available.
NNG_EINVAL
The sockets are not compatible, or are both invalid.
SEE ALSO
nng_options(5), nng_socket(5), nng(7)
2025-02-02 NNG_DEVICE(3)