Provided by: liblapack-doc_3.12.1-2_all 

NAME
la_gerpvgrw - la_gerpvgrw: reciprocal pivot growth
SYNOPSIS
Functions
real function cla_gerpvgrw (n, ncols, a, lda, af, ldaf)
CLA_GERPVGRW multiplies a square real matrix by a complex matrix.
double precision function dla_gerpvgrw (n, ncols, a, lda, af, ldaf)
DLA_GERPVGRW
real function sla_gerpvgrw (n, ncols, a, lda, af, ldaf)
SLA_GERPVGRW
double precision function zla_gerpvgrw (n, ncols, a, lda, af, ldaf)
ZLA_GERPVGRW multiplies a square real matrix by a complex matrix.
Detailed Description
Function Documentation
real function cla_gerpvgrw (integer n, integer ncols, complex, dimension( lda, * ) a, integer lda, complex,
dimension( ldaf, * ) af, integer ldaf)
CLA_GERPVGRW multiplies a square real matrix by a complex matrix.
Purpose:
CLA_GERPVGRW computes the reciprocal pivot growth factor
norm(A)/norm(U). The 'max absolute element' norm is used. If this is
much less than 1, the stability of the LU factorization of the
(equilibrated) matrix A could be poor. This also means that the
solution X, estimated condition numbers, and error bounds could be
unreliable.
Parameters
N
N is INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.
NCOLS
NCOLS is INTEGER
The number of columns of the matrix A. NCOLS >= 0.
A
A is COMPLEX array, dimension (LDA,N)
On entry, the N-by-N matrix A.
LDA
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).
AF
AF is COMPLEX array, dimension (LDAF,N)
The factors L and U from the factorization
A = P*L*U as computed by CGETRF.
LDAF
LDAF is INTEGER
The leading dimension of the array AF. LDAF >= max(1,N).
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
double precision function dla_gerpvgrw (integer n, integer ncols, double precision, dimension( lda, * ) a,
integer lda, double precision, dimension( ldaf, * ) af, integer ldaf)
DLA_GERPVGRW
Purpose:
DLA_GERPVGRW computes the reciprocal pivot growth factor
norm(A)/norm(U). The 'max absolute element' norm is used. If this is
much less than 1, the stability of the LU factorization of the
(equilibrated) matrix A could be poor. This also means that the
solution X, estimated condition numbers, and error bounds could be
unreliable.
Parameters
N
N is INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.
NCOLS
NCOLS is INTEGER
The number of columns of the matrix A. NCOLS >= 0.
A
A is DOUBLE PRECISION array, dimension (LDA,N)
On entry, the N-by-N matrix A.
LDA
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).
AF
AF is DOUBLE PRECISION array, dimension (LDAF,N)
The factors L and U from the factorization
A = P*L*U as computed by DGETRF.
LDAF
LDAF is INTEGER
The leading dimension of the array AF. LDAF >= max(1,N).
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
real function sla_gerpvgrw (integer n, integer ncols, real, dimension( lda, * ) a, integer lda, real,
dimension( ldaf, * ) af, integer ldaf)
SLA_GERPVGRW
Purpose:
SLA_GERPVGRW computes the reciprocal pivot growth factor
norm(A)/norm(U). The 'max absolute element' norm is used. If this is
much less than 1, the stability of the LU factorization of the
(equilibrated) matrix A could be poor. This also means that the
solution X, estimated condition numbers, and error bounds could be
unreliable.
Parameters
N
N is INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.
NCOLS
NCOLS is INTEGER
The number of columns of the matrix A. NCOLS >= 0.
A
A is REAL array, dimension (LDA,N)
On entry, the N-by-N matrix A.
LDA
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).
AF
AF is REAL array, dimension (LDAF,N)
The factors L and U from the factorization
A = P*L*U as computed by SGETRF.
LDAF
LDAF is INTEGER
The leading dimension of the array AF. LDAF >= max(1,N).
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
double precision function zla_gerpvgrw (integer n, integer ncols, complex*16, dimension( lda, * ) a, integer
lda, complex*16, dimension( ldaf, * ) af, integer ldaf)
ZLA_GERPVGRW multiplies a square real matrix by a complex matrix.
Purpose:
ZLA_GERPVGRW computes the reciprocal pivot growth factor
norm(A)/norm(U). The 'max absolute element' norm is used. If this is
much less than 1, the stability of the LU factorization of the
(equilibrated) matrix A could be poor. This also means that the
solution X, estimated condition numbers, and error bounds could be
unreliable.
Parameters
N
N is INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.
NCOLS
NCOLS is INTEGER
The number of columns of the matrix A. NCOLS >= 0.
A
A is COMPLEX*16 array, dimension (LDA,N)
On entry, the N-by-N matrix A.
LDA
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).
AF
AF is COMPLEX*16 array, dimension (LDAF,N)
The factors L and U from the factorization
A = P*L*U as computed by ZGETRF.
LDAF
LDAF is INTEGER
The leading dimension of the array AF. LDAF >= max(1,N).
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Author
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 Tue Jan 28 2025 00:54:31 la_gerpvgrw(3)