Provided by: openmpi-doc_5.0.7-1_all 

SYNTAX
C Syntax
#include <mpi.h>
int MPI_Neighbor_alltoallv(const void *sendbuf, const int sendcounts[],
const int sdispls[], MPI_Datatype sendtype,
void *recvbuf, const int recvcounts[],
const int rdispls[], MPI_Datatype recvtype, MPI_Comm comm)
int MPI_Ineighbor_alltoallv(const void *sendbuf, const int sendcounts[],
const int sdispls[], MPI_Datatype sendtype,
void *recvbuf, const int recvcounts[],
const int rdispls[], MPI_Datatype recvtype, MPI_Comm comm,
MPI_Request *request)
int MPI_Neighbor_alltoallv_init(const void *sendbuf, const int sendcounts[],
const int sdispls[], MPI_Datatype sendtype,
void *recvbuf, const int recvcounts[],
const int rdispls[], MPI_Datatype recvtype, MPI_Comm comm,
MPI_Info info, MPI_Request *request)
Fortran Syntax
USE MPI
! or the older form: INCLUDE 'mpif.h'
MPI_NEIGHBOR_ALLTOALLV(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPE,
RECVBUF, RECVCOUNTS, RDISPLS, RECVTYPE, COMM, IERROR)
<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNTS(*), SDISPLS(*), SENDTYPE
INTEGER RECVCOUNTS(*), RDISPLS(*), RECVTYPE
INTEGER COMM, IERROR
MPI_INEIGHBOR_ALLTOALLV(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPE,
RECVBUF, RECVCOUNTS, RDISPLS, RECVTYPE, COMM, REQUEST, IERROR)
<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNTS(*), SDISPLS(*), SENDTYPE
INTEGER RECVCOUNTS(*), RDISPLS(*), RECVTYPE
INTEGER COMM, REQUEST, IERROR
MPI_NEIGHBOR_ALLTOALLV_INIT(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPE,
RECVBUF, RECVCOUNTS, RDISPLS, RECVTYPE, COMM, INFO, REQUEST, IERROR)
<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNTS(*), SDISPLS(*), SENDTYPE
INTEGER RECVCOUNTS(*), RDISPLS(*), RECVTYPE
INTEGER COMM, INFO, REQUEST, IERROR
Fortran 2008 Syntax
USE mpi_f08
MPI_Neighbor_alltoallv(sendbuf, sendcounts, sdispls, sendtype, recvbuf,
recvcounts, rdispls, recvtype, comm, ierror)
TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
TYPE(*), DIMENSION(..) :: recvbuf
INTEGER, INTENT(IN) :: sendcounts(*), sdispls(*), recvcounts(*),
rdispls(*)
TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
MPI_Ineighbor_alltoallv(sendbuf, sendcounts, sdispls, sendtype, recvbuf,
recvcounts, rdispls, recvtype, comm, request, ierror)
TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
INTEGER, INTENT(IN), ASYNCHRONOUS :: sendcounts(*), sdispls(*),
recvcounts(*), rdispls(*)
TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
MPI_Neighbor_alltoallv_init(sendbuf, sendcounts, sdispls, sendtype, recvbuf,
recvcounts, rdispls, recvtype, comm, info, request, ierror)
TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
INTEGER, INTENT(IN), ASYNCHRONOUS :: sendcounts(*), sdispls(*),
recvcounts(*), rdispls(*)
TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Info), INTENT(IN) :: info
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
INPUT PARAMETERS
• sendbuf: Starting address of send buffer.
• sendcounts: Integer array, where entry i specifies the number of elements to send to neighbor i.
• sdispls: Integer array, where entry i specifies the displacement (offset from sendbuf, in units of
sendtype) from which to send data to neighbor i.
• sendtype: Datatype of send buffer elements.
• recvcounts: Integer array, where entry j specifies the number of elements to receive from neighbor j.
• rdispls: Integer array, where entry j specifies the displacement (offset from recvbuf, in units of
recvtype) to which data from neighbor j should be written.
• recvtype: Datatype of receive buffer elements.
• comm: Communicator over which data is to be exchanged.
• info: Info (handle, persistent only).
OUTPUT PARAMETERS
• recvbuf: Address of receive buffer.
• request: Request (handle, non-blocking only).
• ierror: Fortran only: Error status.
DESCRIPTION
MPI_Neighbor_alltoallv is a generalized collective operation in which all processes send data to and
receive data from all neighbors. It adds flexibility to MPI_Neighbor_alltoall by allowing the user to
specify data to send and receive vector-style (via a displacement and element count). The operation of
this routine can be thought of as follows, where each process performs 2n (n being the number of
neighbors in to topology of communicator comm) independent point-to-point communications. The neighbors
and buffer layout are determined by the topology of comm.
MPI_Cart_get(comm, maxdims, dims, periods, coords);
for (dim = 0, i = 0 ; dim < dims ; ++dim) {
MPI_Cart_shift(comm, dim, 1, &r0, &r1);
MPI_Isend(sendbuf + sdispls[i] * extent(sendtype),
sendcount, sendtype, r0, ..., comm, ...);
MPI_Irecv(recvbuf + rdispls[i] * extent(recvtype),
recvcount, recvtype, r0, ..., comm, ...);
++i;
MPI_Isend(sendbuf + sdispls[i] * extent(sendtype),
sendcount, sendtype, r1, ..., comm, &req[i]);
MPI_Irecv(recvbuf + rdispls[i] * extent(recvtype),
recvcount, recvtype, r1, ..., comm, ...);
++i;
}
Process j sends the k-th block of its local sendbuf to neighbor k, which places the data in the j-th
block of its local recvbuf.
When a pair of processes exchanges data, each may pass different element count and datatype arguments so
long as the sender specifies the same amount of data to send (in bytes) as the receiver expects to
receive.
Note that process i may send a different amount of data to process j than it receives from process j.
Also, a process may send entirely different amounts of data to different processes in the communicator.
NEIGHBOR ORDERING
For a distributed graph topology, created with MPI_Dist_graph_create, the sequence of neighbors in the
send and receive buffers at each process is defined as the sequence returned by MPI_Dist_graph_neighbors
for destinations and sources, respectively. For a general graph topology, created with MPI_Graph_create,
the order of neighbors in the send and receive buffers is defined as the sequence of neighbors as
returned by MPI_Graph_neighbors. Note that general graph topologies should generally be replaced by the
distributed graph topologies.
For a Cartesian topology, created with MPI_Cart_create, the sequence of neighbors in the send and receive
buffers at each process is defined by order of the dimensions, first the neighbor in the negative
direction and then in the positive direction with displacement 1. The numbers of sources and destinations
in the communication routines are 2*ndims with ndims defined in MPI_Cart_create. If a neighbor does not
exist, i.e., at the border of a Cartesian topology in the case of a non-periodic virtual grid dimension
(i.e., periods[…]==false), then this neighbor is defined to be MPI_PROC_NULL.
If a neighbor in any of the functions is MPI_PROC_NULL, then the neighborhood collective communication
behaves like a point-to-point communication with MPI_PROC_NULL in this direction. That is, the buffer is
still part of the sequence of neighbors but it is neither communicated nor updated.
NOTES
The MPI_IN_PLACE option for sendbuf is not meaningful for this operation.
The specification of counts and displacements should not cause any location to be written more than once.
All arguments on all processes are significant. The comm argument, in particular, must describe the same
communicator on all processes.
The offsets of sdispls and rdispls are measured in units of sendtype and recvtype, respectively. Compare
this to MPI_Neighbor_alltoallw, where these offsets are measured in bytes.
ERRORS
Almost all MPI routines return an error value; C routines as the return result of the function and
Fortran routines in the last argument.
Before the error value is returned, the current MPI error handler associated with the communication
object (e.g., communicator, window, file) is called. If no communication object is associated with the
MPI call, then the call is considered attached to MPI_COMM_SELF and will call the associated MPI error
handler. When MPI_COMM_SELF is not initialized (i.e., before MPI_Init/MPI_Init_thread, after
MPI_Finalize, or when using the Sessions Model exclusively) the error raises the initial error handler.
The initial error handler can be changed by calling MPI_Comm_set_errhandler on MPI_COMM_SELF when using
the World model, or the mpi_initial_errhandler CLI argument to mpiexec or info key to MPI_Comm_spawn/‐
MPI_Comm_spawn_multiple. If no other appropriate error handler has been set, then the MPI_ERRORS_RETURN
error handler is called for MPI I/O functions and the MPI_ERRORS_ABORT error handler is called for all
other MPI functions.
Open MPI includes three predefined error handlers that can be used:
• MPI_ERRORS_ARE_FATAL Causes the program to abort all connected MPI processes.
• MPI_ERRORS_ABORT An error handler that can be invoked on a communicator, window, file, or session. When
called on a communicator, it acts as if MPI_Abort was called on that communicator. If called on a
window or file, acts as if MPI_Abort was called on a communicator containing the group of processes in
the corresponding window or file. If called on a session, aborts only the local process.
• MPI_ERRORS_RETURN Returns an error code to the application.
MPI applications can also implement their own error handlers by calling:
• MPI_Comm_create_errhandler then MPI_Comm_set_errhandler
• MPI_File_create_errhandler then MPI_File_set_errhandler
• MPI_Session_create_errhandler then MPI_Session_set_errhandler or at MPI_Session_init
• MPI_Win_create_errhandler then MPI_Win_set_errhandler
Note that MPI does not guarantee that an MPI program can continue past an error.
See the MPI man page for a full list of MPI error codes.
See the Error Handling section of the MPI-3.1 standard for more information.
SEE ALSO:
• MPI_Neighbor_alltoall
• MPI_Neighbor_alltoallw
• MPI_Cart_create
• MPI_Graph_create
• MPI_Dist_graph_create
COPYRIGHT
2003-2025, The Open MPI Community
Feb 17, 2025 MPI_NEIGHBOR_ALLTOALLV_INIT(3)