Provided by: libjpeg-turbo-progs_2.1.5-3ubuntu2_amd64 

NAME
cjpeg - compress an image file to a JPEG file
SYNOPSIS
cjpeg [ options ] [ filename ]
DESCRIPTION
cjpeg compresses the named image file, or the standard input if no file is named, and produces a
JPEG/JFIF file on the standard output. The currently supported input file formats are: PPM (PBMPLUS
color format), PGM (PBMPLUS grayscale format), BMP, GIF, and Targa.
OPTIONS
All switch names may be abbreviated; for example, -grayscale may be written -gray or -gr. Most of the
"basic" switches can be abbreviated to as little as one letter. Upper and lower case are equivalent
(thus -BMP is the same as -bmp). British spellings are also accepted (e.g., -greyscale), though for
brevity these are not mentioned below.
The basic switches are:
-quality N[,...]
Scale quantization tables to adjust image quality. Quality is 0 (worst) to 100 (best); default is
75. (See below for more info.)
-grayscale
Create monochrome JPEG file from color input. By saying -grayscale, you'll get a smaller JPEG
file that takes less time to process.
-rgb Create RGB JPEG file. Using this switch suppresses the conversion from RGB colorspace input to
the default YCbCr JPEG colorspace.
-optimize
Perform optimization of entropy encoding parameters. Without this, default encoding parameters
are used. -optimize usually makes the JPEG file a little smaller, but cjpeg runs somewhat slower
and needs much more memory. Image quality and speed of decompression are unaffected by -optimize.
-progressive
Create progressive JPEG file (see below).
-targa Input file is Targa format. Targa files that contain an "identification" field will not be
automatically recognized by cjpeg; for such files you must specify -targa to make cjpeg treat the
input as Targa format. For most Targa files, you won't need this switch.
The -quality switch lets you trade off compressed file size against quality of the reconstructed image:
the higher the quality setting, the larger the JPEG file, and the closer the output image will be to the
original input. Normally you want to use the lowest quality setting (smallest file) that decompresses
into something visually indistinguishable from the original image. For this purpose the quality setting
should generally be between 50 and 95 (the default is 75) for photographic images. If you see defects at
-quality 75, then go up 5 or 10 counts at a time until you are happy with the output image. (The optimal
setting will vary from one image to another.)
-quality 100 will generate a quantization table of all 1's, minimizing loss in the quantization step (but
there is still information loss in subsampling, as well as roundoff error.) For most images, specifying
a quality value above about 95 will increase the size of the compressed file dramatically, and while the
quality gain from these higher quality values is measurable (using metrics such as PSNR or SSIM), it is
rarely perceivable by human vision.
In the other direction, quality values below 50 will produce very small files of low image quality.
Settings around 5 to 10 might be useful in preparing an index of a large image library, for example. Try
-quality 2 (or so) for some amusing Cubist effects. (Note: quality values below about 25 generate 2-byte
quantization tables, which are considered optional in the JPEG standard. cjpeg emits a warning message
when you give such a quality value, because some other JPEG programs may be unable to decode the
resulting file. Use -baseline if you need to ensure compatibility at low quality values.)
The -quality option has been extended in this version of cjpeg to support separate quality settings for
luminance and chrominance (or, in general, separate settings for every quantization table slot.) The
principle is the same as chrominance subsampling: since the human eye is more sensitive to spatial
changes in brightness than spatial changes in color, the chrominance components can be quantized more
than the luminance components without incurring any visible image quality loss. However, unlike
subsampling, this feature reduces data in the frequency domain instead of the spatial domain, which
allows for more fine-grained control. This option is useful in quality-sensitive applications, for which
the artifacts generated by subsampling may be unacceptable.
The -quality option accepts a comma-separated list of parameters, which respectively refer to the quality
levels that should be assigned to the quantization table slots. If there are more q-table slots than
parameters, then the last parameter is replicated. Thus, if only one quality parameter is given, this is
used for both luminance and chrominance (slots 0 and 1, respectively), preserving the legacy behavior of
cjpeg v6b and prior. More (or customized) quantization tables can be set with the -qtables option and
assigned to components with the -qslots option (see the "wizard" switches below.)
JPEG files generated with separate luminance and chrominance quality are fully compliant with standard
JPEG decoders.
CAUTION: For this setting to be useful, be sure to pass an argument of -sample 1x1 to cjpeg to disable
chrominance subsampling. Otherwise, the default subsampling level (2x2, AKA "4:2:0") will be used.
The -progressive switch creates a "progressive JPEG" file. In this type of JPEG file, the data is stored
in multiple scans of increasing quality. If the file is being transmitted over a slow communications
link, the decoder can use the first scan to display a low-quality image very quickly, and can then
improve the display with each subsequent scan. The final image is exactly equivalent to a standard JPEG
file of the same quality setting, and the total file size is about the same --- often a little smaller.
Switches for advanced users:
-arithmetic
Use arithmetic coding. Caution: arithmetic coded JPEG is not yet widely implemented, so many
decoders will be unable to view an arithmetic coded JPEG file at all.
-dct int
Use accurate integer DCT method (default).
-dct fast
Use less accurate integer DCT method [legacy feature]. When the Independent JPEG Group's software
was first released in 1991, the compression time for a 1-megapixel JPEG image on a mainstream PC
was measured in minutes. Thus, the fast integer DCT algorithm provided noticeable performance
benefits. On modern CPUs running libjpeg-turbo, however, the compression time for a 1-megapixel
JPEG image is measured in milliseconds, and thus the performance benefits of the fast algorithm
are much less noticeable. On modern x86/x86-64 CPUs that support AVX2 instructions, the fast and
int methods have similar performance. On other types of CPUs, the fast method is generally about
5-15% faster than the int method.
For quality levels of 90 and below, there should be little or no perceptible quality difference
between the two algorithms. For quality levels above 90, however, the difference between the fast
and int methods becomes more pronounced. With quality=97, for instance, the fast method incurs
generally about a 1-3 dB loss in PSNR relative to the int method, but this can be larger for some
images. Do not use the fast method with quality levels above 97. The algorithm often degenerates
at quality=98 and above and can actually produce a more lossy image than if lower quality levels
had been used. Also, in libjpeg-turbo, the fast method is not fully accelerated for quality
levels above 97, so it will be slower than the int method.
-dct float
Use floating-point DCT method [legacy feature]. The float method does not produce significantly
more accurate results than the int method, and it is much slower. The float method may also give
different results on different machines due to varying roundoff behavior, whereas the integer
methods should give the same results on all machines.
-icc file
Embed ICC color management profile contained in the specified file.
-restart N
Emit a JPEG restart marker every N MCU rows, or every N MCU blocks if "B" is attached to the
number. -restart 0 (the default) means no restart markers.
-smooth N
Smooth the input image to eliminate dithering noise. N, ranging from 1 to 100, indicates the
strength of smoothing. 0 (the default) means no smoothing.
-maxmemory N
Set limit for amount of memory to use in processing large images. Value is in thousands of bytes,
or millions of bytes if "M" is attached to the number. For example, -max 4m selects 4000000
bytes. If more space is needed, an error will occur.
-outfile name
Send output image to the named file, not to standard output.
-memdst
Compress to memory instead of a file. This feature was implemented mainly as a way of testing the
in-memory destination manager (jpeg_mem_dest()), but it is also useful for benchmarking, since it
reduces the I/O overhead.
-report
Report compression progress.
-strict
Treat all warnings as fatal. Enabling this option will cause the compressor to abort if an LZW-
compressed GIF input image contains incomplete or corrupt image data.
-verbose
Enable debug printout. More -v's give more output. Also, version information is printed at
startup.
-debug Same as -verbose.
-version
Print version information and exit.
The -restart option inserts extra markers that allow a JPEG decoder to resynchronize after a transmission
error. Without restart markers, any damage to a compressed file will usually ruin the image from the
point of the error to the end of the image; with restart markers, the damage is usually confined to the
portion of the image up to the next restart marker. Of course, the restart markers occupy extra space.
We recommend -restart 1 for images that will be transmitted across unreliable networks such as Usenet.
The -smooth option filters the input to eliminate fine-scale noise. This is often useful when converting
dithered images to JPEG: a moderate smoothing factor of 10 to 50 gets rid of dithering patterns in the
input file, resulting in a smaller JPEG file and a better-looking image. Too large a smoothing factor
will visibly blur the image, however.
Switches for wizards:
-baseline
Force baseline-compatible quantization tables to be generated. This clamps quantization values to
8 bits even at low quality settings. (This switch is poorly named, since it does not ensure that
the output is actually baseline JPEG. For example, you can use -baseline and -progressive
together.)
-qtables file
Use the quantization tables given in the specified text file.
-qslots N[,...]
Select which quantization table to use for each color component.
-sample HxV[,...]
Set JPEG sampling factors for each color component.
-scans file
Use the scan script given in the specified text file.
The "wizard" switches are intended for experimentation with JPEG. If you don't know what you are doing,
don't use them. These switches are documented further in the file wizard.txt.
EXAMPLES
This example compresses the PPM file foo.ppm with a quality factor of 60 and saves the output as foo.jpg:
cjpeg -quality 60 foo.ppm > foo.jpg
HINTS
Color GIF files are not the ideal input for JPEG; JPEG is really intended for compressing full-color
(24-bit) images. In particular, don't try to convert cartoons, line drawings, and other images that have
only a few distinct colors. GIF works great on these, JPEG does not. If you want to convert a GIF to
JPEG, you should experiment with cjpeg's -quality and -smooth options to get a satisfactory conversion.
-smooth 10 or so is often helpful.
Avoid running an image through a series of JPEG compression/decompression cycles. Image quality loss
will accumulate; after ten or so cycles the image may be noticeably worse than it was after one cycle.
It's best to use a lossless format while manipulating an image, then convert to JPEG format when you are
ready to file the image away.
The -optimize option to cjpeg is worth using when you are making a "final" version for posting or
archiving. It's also a win when you are using low quality settings to make very small JPEG files; the
percentage improvement is often a lot more than it is on larger files. (At present, -optimize mode is
always selected when generating progressive JPEG files.)
ENVIRONMENT
JPEGMEM
If this environment variable is set, its value is the default memory limit. The value is
specified as described for the -maxmemory switch. JPEGMEM overrides the default value specified
when the program was compiled, and itself is overridden by an explicit -maxmemory.
SEE ALSO
djpeg(1), jpegtran(1), rdjpgcom(1), wrjpgcom(1)
ppm(5), pgm(5)
Wallace, Gregory K. "The JPEG Still Picture Compression Standard", Communications of the ACM, April 1991
(vol. 34, no. 4), pp. 30-44.
AUTHOR
Independent JPEG Group
This file was modified by The libjpeg-turbo Project to include only information relevant to libjpeg-
turbo, to wordsmith certain sections, and to describe features not present in libjpeg.
ISSUES
Not all variants of BMP and Targa file formats are supported.
The -targa switch is not a bug, it's a feature. (It would be a bug if the Targa format designers had not
been clueless.)
30 November 2021 CJPEG(1)