Provided by: manpages-cs_4.26.0-1_all 

JMÉNO
signal - overview of signals
POPIS
V Linuxu jsou podporovány jak POSIX reliable signály (dále jen "standardní signály"), tak POSIX real-time
signály.
Dispozice signálů
Každý signál má dispozici, která určuje, jak se proces zachová při jeho přijetí.
Údaje ve sloupci "Akce" níže uvedených tabulek určují výchozí dipozici každého signálu následujícně:
Term Výchozí akcí je ukončení procesu.
Ign Výchozí akcí je ignorování signálu.
Core Výchozí akcí je ukončení procesu a výpis paměti (core dump) (viz core(5)).
Stop Výchozí akcí je zastavení procesu.
Cont Výchozí akcí je pokračování procesu, pokud je momentálně zastavený.
A process can change the disposition of a signal using sigaction(2) or signal(2). (The latter is less
portable when establishing a signal handler; see signal(2) for details.) Using these system calls, a
process can elect one of the following behaviors to occur on delivery of the signal: perform the default
action; ignore the signal; or catch the signal with a signal handler, a programmer-defined function that
is automatically invoked when the signal is delivered.
By default, a signal handler is invoked on the normal process stack. It is possible to arrange that the
signal handler uses an alternate stack; see sigaltstack(2) for a discussion of how to do this and when
it might be useful.
Dispozice signálu je atribut procesu: v mnohovláknových aplikacích je dispozice určitého signálu stejná
pro všechna vlákna.
A child created via fork(2) inherits a copy of its parent's signal dispositions. During an execve(2),
the dispositions of handled signals are reset to the default; the dispositions of ignored signals are
left unchanged.
Sending a signal
The following system calls and library functions allow the caller to send a signal:
raise(3)
Sends a signal to the calling thread.
kill(2)
Sends a signal to a specified process, to all members of a specified process group, or to all
processes on the system.
pidfd_send_signal(2)
Sends a signal to a process identified by a PID file descriptor.
killpg(3)
Sends a signal to all of the members of a specified process group.
pthread_kill(3)
Sends a signal to a specified POSIX thread in the same process as the caller.
tgkill(2)
Sends a signal to a specified thread within a specific process. (This is the system call used to
implement pthread_kill(3).)
sigqueue(3)
Sends a real-time signal with accompanying data to a specified process.
Waiting for a signal to be caught
The following system calls suspend execution of the calling thread until a signal is caught (or an
unhandled signal terminates the process):
pause(2)
Suspends execution until any signal is caught.
sigsuspend(2)
Temporarily changes the signal mask (see below) and suspends execution until one of the unmasked
signals is caught.
Synchronously accepting a signal
Rather than asynchronously catching a signal via a signal handler, it is possible to synchronously accept
the signal, that is, to block execution until the signal is delivered, at which point the kernel returns
information about the signal to the caller. There are two general ways to do this:
• sigwaitinfo(2), sigtimedwait(2), and sigwait(3) suspend execution until one of the signals in a
specified set is delivered. Each of these calls returns information about the delivered signal.
• signalfd(2) returns a file descriptor that can be used to read information about signals that are
delivered to the caller. Each read(2) from this file descriptor blocks until one of the signals in the
set specified in the signalfd(2) call is delivered to the caller. The buffer returned by read(2)
contains a structure describing the signal.
Signal mask and pending signals
A signal may be blocked, which means that it will not be delivered until it is later unblocked. Between
the time when it is generated and when it is delivered a signal is said to be pending.
Each thread in a process has an independent signal mask, which indicates the set of signals that the
thread is currently blocking. A thread can manipulate its signal mask using pthread_sigmask(3). In a
traditional single-threaded application, sigprocmask(2) can be used to manipulate the signal mask.
A child created via fork(2) inherits a copy of its parent's signal mask; the signal mask is preserved
across execve(2).
A signal may be process-directed or thread-directed. A process-directed signal is one that is targeted at
(and thus pending for) the process as a whole. A signal may be process-directed because it was generated
by the kernel for reasons other than a hardware exception, or because it was sent using kill(2) or
sigqueue(3). A thread-directed signal is one that is targeted at a specific thread. A signal may be
thread-directed because it was generated as a consequence of executing a specific machine-language
instruction that triggered a hardware exception (e.g., SIGSEGV for an invalid memory access, or SIGFPE
for a math error), or because it was targeted at a specific thread using interfaces such as tgkill(2) or
pthread_kill(3).
A process-directed signal may be delivered to any one of the threads that does not currently have the
signal blocked. If more than one of the threads has the signal unblocked, then the kernel chooses an
arbitrary thread to which to deliver the signal.
A thread can obtain the set of signals that it currently has pending using sigpending(2). This set will
consist of the union of the set of pending process-directed signals and the set of signals pending for
the calling thread.
A child created via fork(2) initially has an empty pending signal set; the pending signal set is
preserved across an execve(2).
Execution of signal handlers
Whenever there is a transition from kernel-mode to user-mode execution (e.g., on return from a system
call or scheduling of a thread onto the CPU), the kernel checks whether there is a pending unblocked
signal for which the process has established a signal handler. If there is such a pending signal, the
following steps occur:
(1) The kernel performs the necessary preparatory steps for execution of the signal handler:
(1.1) The signal is removed from the set of pending signals.
(1.2) If the signal handler was installed by a call to sigaction(2) that specified the SA_ONSTACK
flag and the thread has defined an alternate signal stack (using sigaltstack(2)), then that
stack is installed.
(1.3) Various pieces of signal-related context are saved into a special frame that is created on
the stack. The saved information includes:
• the program counter register (i.e., the address of the next instruction in the main
program that should be executed when the signal handler returns);
• architecture-specific register state required for resuming the interrupted program;
• the thread's current signal mask;
• the thread's alternate signal stack settings.
If the signal handler was installed using the sigaction(2) SA_SIGINFO flag, then the above
information is accessible via the ucontext_t object that is pointed to by the third argument
of the signal handler. This object reflects the state at which the signal is delivered,
rather than in the handler; for example, the mask of blocked signals stored in this object
will not contain the mask of new signals blocked through sigaction(2).
(1.4) Any signals specified in act->sa_mask when registering the handler with sigaction(2) are
added to the thread's signal mask. The signal being delivered is also added to the signal
mask, unless SA_NODEFER was specified when registering the handler. These signals are thus
blocked while the handler executes.
(2) The kernel constructs a frame for the signal handler on the stack. The kernel sets the program
counter for the thread to point to the first instruction of the signal handler function, and
configures the return address for that function to point to a piece of user-space code known as the
signal trampoline (described in sigreturn(2)).
(3) The kernel passes control back to user-space, where execution commences at the start of the signal
handler function.
(4) When the signal handler returns, control passes to the signal trampoline code.
(5) The signal trampoline calls sigreturn(2), a system call that uses the information in the stack frame
created in step 1 to restore the thread to its state before the signal handler was called. The
thread's signal mask and alternate signal stack settings are restored as part of this procedure.
Upon completion of the call to sigreturn(2), the kernel transfers control back to user space, and
the thread recommences execution at the point where it was interrupted by the signal handler.
Note that if the signal handler does not return (e.g., control is transferred out of the handler using
siglongjmp(3), or the handler executes a new program with execve(2)), then the final step is not
performed. In particular, in such scenarios it is the programmer's responsibility to restore the state of
the signal mask (using sigprocmask(2)), if it is desired to unblock the signals that were blocked on
entry to the signal handler. (Note that siglongjmp(3) may or may not restore the signal mask, depending
on the savesigs value that was specified in the corresponding call to sigsetjmp(3).)
From the kernel's point of view, execution of the signal handler code is exactly the same as the
execution of any other user-space code. That is to say, the kernel does not record any special state
information indicating that the thread is currently executing inside a signal handler. All necessary
state information is maintained in user-space registers and the user-space stack. The depth to which
nested signal handlers may be invoked is thus limited only by the user-space stack (and sensible software
design!).
Standardní Signály
Linux supports the standard signals listed below. The second column of the table indicates which standard
(if any) specified the signal: "P1990" indicates that the signal is described in the original
POSIX.1-1990 standard; "P2001" indicates that the signal was added in SUSv2 and POSIX.1-2001.
Signál Standard Akce Poznámka
──────────────────────────────────────────────────────────────────────────────────────────────
SIGABRT P1990 Core "Abort" - ukončení funkcí abort(3)
SIGALRM P1990 Term Signál od časovače, nastaveného funkcí alarm(1)
SIGBUS P2001 Core "Bus error" - pokus o přístup mimo mapovanou paměť
SIGCHLD P1990 Ign Zastavení nebo ukončení dětského procesu
SIGCLD - Ign Synonymum SIGCHLD
SIGCONT P1990 Cont Pokračování po zastavení
SIGEMT - Term Emulator trap
SIGFPE P1990 Core "Floating point exception" - přetečení v pohyblivé řádové čárce
SIGHUP P1990 Term "Hangup" - při zavěšení na řídícím terminálu
nebo ukončení řídícího procesu
SIGILL P1990 Core "Illegal Instruction" - neplatná instrukce
SIGINFO - Synonymum SIGPWR
SIGINT P1990 Term "Interrupt" - přerušení z klávesnice
SIGIO - Term Lze pokračovat ve vstupu/výstupu (4.2 BSD)
SIGIOT - Core IOT - synonymum signálu SIGABRT
SIGKILL P1990 Term "Kill" - signál pro nepodmíněné ukončení procesu
SIGLOST - Term Zámek souboru byl ztracen (nepoužívá se)
SIGPIPE P1990 Term "Broken pipe" - pokus o zápis do roury,
readers; see pipe(7)
SIGPOLL P2001 Term Pollable event (Sys V);
Synonymum SIGIO
SIGPROF P2001 Term Časovač používaný při profilování
SIGPWR - Term Výpadek napájení (Systém V)
SIGQUIT P1990 Core "Quit" - ukončení z klávesnice
SIGSEGV P1990 Core Odkaz na nepřípustnou adresu v paměti
SIGSTKFLT - Term Chyba zásobníku koprocesoru (nepoužívá se)
SIGSTOP P1990 Stop Zastavení procesu
SIGTSTP P1990 Stop Stop typed at terminal
SIGSYS P2001 Core Bad system call (SVr4);
see also seccomp(2)
SIGTERM P1990 Term "Termination" - signál ukončení
SIGTRAP P2001 Core Přerušení při ladění (trasování,breakpoint)
SIGTTIN P1990 Stop Terminal input for background process
SIGTTOU P1990 Stop Terminal output for background process
SIGUNUSED - Core Synonymous with SIGSYS
SIGURG P2001 Ign Soket přijal data s příznakem Urgent (4.2 BSD)
SIGUSR1 P1990 Term Signál 1 definovaný uživatelem
SIGUSR2 P1990 Term Signál 2 definovaný uživatelem
SIGVTALRM P2001 Term Virtuální časovač (4.2 BSD)
SIGXCPU P2001 Core Překročen limit času CPU (4.2 BSD);
viz setrlimit(2)
SIGXFSZ P2001 Core Překročen limit velikosti souboru (4.2 BSD);
viz setrlimit(2)
SIGWINCH - Ign Změna velikosti okna (4.3 BSD, Sun)
Signály SIGKILL a SIGSTOP nemohou být zachyceny, blokovány ani ignorovány.
Až po Linux 2.2 včetně bylo výchozí chování pro SIGSYS, SIGXCPU, SIGXFSZ, a (na architekturách jiných než
SPARC a MIPS) SIGBUS ukončit proces (bez core dump). (Na některých jiných UNIXových systémech bylo
výchozí akcí pro SIGXCPU a SIGXFSZ ukončení procesu bez core dump.) Linux 2.4 splňuje požadavky
POSIX.1-2001 pro tyto signály, ukončuje procesy s core dump.
SIGEMT není specifikován v POSIX.1-2001, ale stejně je přítomen na většině ostatních UNIXových systémů,
kde je výchozí akcí obvykle ukončení procesu s core dump.
SIGPWR (není specifikován v POSIX.1-2001) na většině ostatních UNIXových systémů, kde se objevuje, je
obvykle ignorován.
SIGIO (není specifikován v POSIX.1-2001) na některých dalších UNIXech je jako výchozí ignorován.
Queueing and delivery semantics for standard signals
If multiple standard signals are pending for a process, the order in which the signals are delivered is
unspecified.
Standard signals do not queue. If multiple instances of a standard signal are generated while that signal
is blocked, then only one instance of the signal is marked as pending (and the signal will be delivered
just once when it is unblocked). In the case where a standard signal is already pending, the siginfo_t
structure (see sigaction(2)) associated with that signal is not overwritten on arrival of subsequent
instances of the same signal. Thus, the process will receive the information associated with the first
instance of the signal.
Signal numbering for standard signals
The numeric value for each signal is given in the table below. As shown in the table, many signals have
different numeric values on different architectures. The first numeric value in each table row shows the
signal number on x86, ARM, and most other architectures; the second value is for Alpha and SPARC; the
third is for MIPS; and the last is for PARISC. A dash (-) denotes that a signal is absent on the
corresponding architecture.
Signál x86/ARM Alpha/ MIPS PARISC Poznámky
most others SPARC
─────────────────────────────────────────────────────────────────
SIGHUP 1 1 1 1
SIGINT 2 2 2 2
SIGQUIT 3 3 3 3
SIGILL 4 4 4 4
SIGTRAP 5 5 5 5
SIGABRT 6 6 6 6
SIGIOT 6 6 6 6
SIGBUS 7 10 10 10
SIGEMT - 7 7 -
SIGFPE 8 8 8 8
SIGKILL 9 9 9 9
SIGUSR1 10 30 16 16
SIGSEGV 11 11 11 11
SIGUSR2 12 31 17 17
SIGPIPE 13 13 13 13
SIGALRM 14 14 14 14
SIGTERM 15 15 15 15
SIGSTKFLT 16 - - 7
SIGCHLD 17 20 18 18
SIGCLD - - 18 -
SIGCONT 18 19 25 26
SIGSTOP 19 17 23 24
SIGTSTP 20 18 24 25
SIGTTIN 21 21 26 27
SIGTTOU 22 22 27 28
SIGURG 23 16 21 29
SIGXCPU 24 24 30 12
SIGXFSZ 25 25 31 30
SIGVTALRM 26 26 28 20
SIGPROF 27 27 29 21
SIGWINCH 28 28 20 23
SIGIO 29 23 22 22
SIGPOLL Same as SIGIO
SIGPWR 30 29/- 19 19
SIGINFO - 29/- - -
SIGLOST - -/29 - -
SIGSYS 31 12 12 31
SIGUNUSED 31 - - 31
Note the following:
• Where defined, SIGUNUSED is synonymous with SIGSYS. Since glibc 2.26, SIGUNUSED is no longer defined
on any architecture.
• Signal 29 is SIGINFO/SIGPWR (synonyms for the same value) on Alpha but SIGLOST on SPARC.
Real-time signály
Starting with Linux 2.2, Linux supports real-time signals as originally defined in the POSIX.1b real-time
extensions (and now included in POSIX.1-2001). The range of supported real-time signals is defined by the
macros SIGRTMIN and SIGRTMAX. POSIX.1-2001 requires that an implementation support at least
_POSIX_RTSIG_MAX (8) real-time signals.
Linux podporuje 33 různých real-time signálů očíslovaných 32 až 64. Nicméně implementace POSIX threads v
glibc používá interně dva (pro NPTL) nebo tři (pro LinuxThreads) real-time signály (viz pthreads(7)), a
podle toho upravuje hodnotu SIGRTMIN (na 34 nebo 35). protože rozsah dostupných real-time signálů se liší
v závislosti na implementaci vláken v glibc (může se měnit za běhu v závislosti na jádře a glibc) a
navíc rozsah real-time signálů se mezi UNIXovými systémy liší, programy by nikdy neměly odkazovat na
real-time signály pevně danými čísly, místo toho by měly používat notaci SIGRTMIN+n, a za běhu
kontrolovat, zda SIGRTMIN+n nepřesahuje SIGRTMAX.
Na rozdíl od standardních signálů nemají real-time signály stanovený význam: Celá sada real-time signálů
může být použita pro účely definované aplikací.
Výchozí akcí pro nezpracovaný real-time signál je ukončení procesu, který jej přijal.
Real-time signály se liší následujícně:
• Vícero instancí real-time signálů může být zařazeno do fronty. Naopak pokud je doručeno vícero
instancí standardního signálu, zatímco je signál blokován, je do fronty zařazen jen jeden.
• Pokud je signál poslán pomocí sigqueue(3), může s ním být poslána doprovodná hodnota (integer nebo
pointer). Pokud přijímací proces vytvoří pro tento signál handler pomocí vlajky SA_SIGINFO pro
sigaction(2), tak může tato data získat v poli si_value struktury siginfo_t předané jako druhý
argument handleru. Navíc mohou být pole si_pid a si_uid této struktury použita k získání PID a real
user ID procesu, který signál poslal.
• Real-time signály jsou doručeny v zaručeném pořadí. Vícero real-time signálů stejného typu je doručeno
v pořadí, v jakém byly vyslány. Pokud jsou procesu poslány různé real-time signály, jsou doručeny v
pořadí podle čísla, začínajíc nejnižším (tj. signály s nízkým číslem mají vyšší prioritu). Naopak,
pokud na proces čeká vícero standardních signálů, není pořadí jejich doručení definováno.
Pokud má proces nevyřízené zároveň real-time a standardní signály, POSIX neurčuje, které mají být
doručeny jako první. Linux, stejně jako mnoho jiných implementací, v takovém případě upřednostňí
standardní signály.
According to POSIX, an implementation should permit at least _POSIX_SIGQUEUE_MAX (32) real-time signals
to be queued to a process. However, Linux does things differently. Up to and including Linux 2.6.7, Linux
imposes a system-wide limit on the number of queued real-time signals for all processes. This limit can
be viewed and (with privilege) changed via the /proc/sys/kernel/rtsig-max file. A related file,
/proc/sys/kernel/rtsig-nr, can be used to find out how many real-time signals are currently queued. In
Linux 2.6.8, these /proc interfaces were replaced by the RLIMIT_SIGPENDING resource limit, which
specifies a per-user limit for queued signals; see setrlimit(2) for further details.
The addition of real-time signals required the widening of the signal set structure (sigset_t) from 32
to 64 bits. Consequently, various system calls were superseded by new system calls that supported the
larger signal sets. The old and new system calls are as follows:
Jádro 2.0 a dřívější Linux 2.2 and later
sigaction(2) rt_sigaction(2)
sigpending(2) rt_sigpending(2)
sigprocmask(2) rt_sigprocmask(2)
sigreturn(2) rt_sigreturn(2)
sigsuspend(2) rt_sigsuspend(2)
sigtimedwait(2) rt_sigtimedwait(2)
Přerušení systémových volání a funkcí knihoven prostřednictvím "signal handlers"
Pokud je signal handler vyvolán v okamžiku, kdy je systémové volání nebo funkce knihovny blokována, pak:
• je volání automaticky restartováno po návratu signal handleru, nebo
• volání selže s chybou EINTR.
Která z těchto možností nastane, záleží na rozhraní a na tom, zda byl signal handler definován s pomocí
vlajky SA_RESTART (viz sigaction(2)). Podrobnosti se mezi UNIXovými systémy liší; dále jsou uvedeny pro
Linux.
If a blocked call to one of the following interfaces is interrupted by a signal handler, then the call is
automatically restarted after the signal handler returns if the SA_RESTART flag was used; otherwise the
call fails with the error EINTR:
• read(2), readv(2), write(2), writev(2), and ioctl(2) calls on "slow" devices. A "slow" device is one
where the I/O call may block for an indefinite time, for example, a terminal, pipe, or socket. If an
I/O call on a slow device has already transferred some data by the time it is interrupted by a signal
handler, then the call will return a success status (normally, the number of bytes transferred). Note
that a (local) disk is not a slow device according to this definition; I/O operations on disk devices
are not interrupted by signals.
• open(2), v případě, že může blokovat (např. při otevírání FIFO; viz fifo(7)).
• wait(2), wait3(2), wait4(2), waitid(2) a waitpid(2).
• Socket interfaces: accept(2), connect(2), recv(2), recvfrom(2), recvmmsg(2), recvmsg(2), send(2),
sendto(2), and sendmsg(2), unless a timeout has been set on the socket (see below).
• File locking interfaces: flock(2) and the F_SETLKW and F_OFD_SETLKW operations of fcntl(2)
• Rozhraní pro POSIXové fronty zpráv: mq_receive(3), mq_timedreceive(3), mq_send(3) a mq_timedsend(3).
• futex(2) FUTEX_WAIT (od jádra 2.6.22; předtím vždycky selhalo s EINTR).
• getrandom(2).
• pthread_mutex_lock(3), pthread_cond_wait(3), and related APIs.
• futex(2) FUTEX_WAIT_BITSET.
• Rozhraní POSIXových semaforů: sem_wait(3) a sem_timedwait(3) (od jádra 2.6.22; předtím vždycky selhalo
s EINTR).
• read(2) from an inotify(7) file descriptor (since Linux 3.8; beforehand, always failed with EINTR).
The following interfaces are never restarted after being interrupted by a signal handler, regardless of
the use of SA_RESTART; they always fail with the error EINTR when interrupted by a signal handler:
• "Input" socket interfaces, when a timeout (SO_RCVTIMEO) has been set on the socket using
setsockopt(2): accept(2), recv(2), recvfrom(2), recvmmsg(2) (also with a non-NULL timeout argument),
and recvmsg(2).
• "Output" socket interfaces, when a timeout (SO_RCVTIMEO) has been set on the socket using
setsockopt(2): connect(2), send(2), sendto(2), and sendmsg(2).
• Interfaces used to wait for signals: pause(2), sigsuspend(2), sigtimedwait(2), and sigwaitinfo(2).
• Multiplexující rozhraní popisovačů souborů: epoll_wait(2), epoll_pwait(2), poll(2), ppoll(2),
select(2) a pselect(2).
• System V IPC rozhraní: msgrcv(2), msgsnd(2), semop(2) a semtimedop(2).
• Rozhraní pro spánek: clock_nanosleep(2), nanosleep(2) a usleep(3).
• io_getevents(2).
Funkce sleep(3) se také při přerušení signal handlerem nerestartuje, nýbrž vrátí úspěch: počet sekund,
které zbývají ke spaní.
In certain circumstances, the seccomp(2) user-space notification feature can lead to restarting of
system calls that would otherwise never be restarted by SA_RESTART; for details, see seccomp_unotify(2).
Přerušení systémovách volání a funkcí knihoven signály Stop
V Linuxu mohou některá blokující rozhraní selhat s chybou EINTR i bez signal handlerů, pokud je proces
zastaven jedním ze stop signálů a poté obnoven pomocí SIGCONT. Toto chování neodporuje POSIX.1 a
neobjevuje se v jiných systémech.
Linuxová rozhraní, v nichž se toto chování projevuje, jsou:
• "Input" socket interfaces, when a timeout (SO_RCVTIMEO) has been set on the socket using
setsockopt(2): accept(2), recv(2), recvfrom(2), recvmmsg(2) (also with a non-NULL timeout argument),
and recvmsg(2).
• "Output" socket interfaces, when a timeout (SO_RCVTIMEO) has been set on the socket using
setsockopt(2): connect(2), send(2), sendto(2), and sendmsg(2), if a send timeout (SO_SNDTIMEO) has
been set.
• epoll_wait(2), epoll_pwait(2).
• semop(2), semtimedop(2).
• sigtimedwait(2), sigwaitinfo(2).
• Jádro 3.7 a dřívější: read(2) z popisovače souborů inotify(7).
• Jádro 2.6.21 a dřívější: futex(2) FUTEX_WAIT, sem_timedwait(3), sem_wait(3).
• Jádro 2.6.8 a dřívější: msgrcv(2), msgsnd(2).
• Jádro 2.4 a dřívější: nanosleep(2).
STANDARDY
POSIX.1, s uvedenými výjimkami.
POZNÁMKY
For a discussion of async-signal-safe functions, see signal-safety(7).
The /proc/pid/task/tid/status file contains various fields that show the signals that a thread is
blocking (SigBlk), catching (SigCgt), or ignoring (SigIgn). (The set of signals that are caught or
ignored will be the same across all threads in a process.) Other fields show the set of pending signals
that are directed to the thread (SigPnd) as well as the set of pending signals that are directed to the
process as a whole (ShdPnd). The corresponding fields in /proc/pid/status show the information for the
main thread. See proc(5) for further details.
CHYBY
There are six signals that can be delivered as a consequence of a hardware exception: SIGBUS, SIGEMT,
SIGFPE, SIGILL, SIGSEGV, and SIGTRAP. Which of these signals is delivered, for any given hardware
exception, is not documented and does not always make sense.
For example, an invalid memory access that causes delivery of SIGSEGV on one CPU architecture may cause
delivery of SIGBUS on another architecture, or vice versa.
For another example, using the x86 int instruction with a forbidden argument (any number other than 3 or
128) causes delivery of SIGSEGV, even though SIGILL would make more sense, because of how the CPU
reports the forbidden operation to the kernel.
DALŠÍ INFORMACE
kill(1), clone(2), getrlimit(2), kill(2), pidfd_send_signal(2), restart_syscall(2), rt_sigqueueinfo(2),
setitimer(2), setrlimit(2), sgetmask(2), sigaction(2), sigaltstack(2), signal(2), signalfd(2),
sigpending(2), sigprocmask(2), sigreturn(2), sigsuspend(2), sigwaitinfo(2), abort(3), bsd_signal(3),
killpg(3), longjmp(3), pthread_sigqueue(3), raise(3), sigqueue(3), sigset(3), sigsetops(3), sigvec(3),
sigwait(3), strsignal(3), swapcontext(3), sysv_signal(3), core(5), proc(5), nptl(7), pthreads(7),
sigevent(3type)
PŘEKLAD
Překlad této příručky do češtiny vytvořili Marek Kubita <Kubitovi@mbox.lantanet.cz> a Pavel Heimlich
<tropikhajma@gmail.com>
Tento překlad je bezplatná dokumentace; Přečtěte si GNU General Public License Version 3 nebo novější
ohledně podmínek autorských práv. Neexistuje ŽÁDNÁ ODPOVĚDNOST.
Pokud narazíte na nějaké chyby v překladu této příručky, pošlete e-mail na adresu translation-team-
cs@lists.sourceforge.net.
Linux man-pages 6.9.1 17. června 2024 signál(7)