Provided by: libnetcdff-dev_4.6.0+really4.5.4+ds-3build2_amd64 bug

NAME

       netcdf - Unidata's Network Common Data Form (netCDF) library interface

SYNOPSIS

       include netcdf.inc

   Most Systems:
       f77 ...  -lnetcdf -lhdf5_hl -lhdf5 -lz -lm

   CRAY PVP Systems:
       f90 -dp -i64 ... -lnetcdf

       Complete  documentation  for  the netCDF libraries can be found at the netCDF website: https://www.unida‐
       ta.ucar.edu/software/netcdf/.

LIBRARY VERSION

       This document describes versions 3 and 4 of Unidata netCDF data-access interface for the FORTRAN program‐
       ming language.

       character*80 nf_inq_libvers(void)

              Returns a string identifying the version of the netCDF library, and when it was built, like: "3.1a
              of Aug 22 1996 12:57:47 $".

       The RCS ident(1) command will find a string like "$Id: @(#) netcdf library version 3.1a of  Sep   6  1996
       15:56:26 $" in the library. The SCCS what(1) command will find a string like "netcdf library version 3.1a
       of Aug 23 1996 16:07:40 $".

RETURN VALUES

       All netCDF functions (except nf_inq_libvers() and nf_strerror()) return an integer status.

       If  this  returned status value is not equal to NF_NOERR (zero), it indicates that an error occurred. The
       possible status values are defined in netcdf.inc.

       character*80 nf_strerror(integer status)

              Returns a string textual translation of the status value, like "Attribute or  variable  name  con‐
              tains illegal characters" or "No such file or directory".

FILE OPERATIONS


       integer function nf_create(character*(*) path, integer cmode, integer ncid)

              Creates  a  new netCDF dataset at path, returning a netCDF ID in ncid.  The argument cmode may in‐
              clude the bitwise-or of the following flags: NF_NOCLOBBER to protect  existing  datasets  (default
              silently  blows them away), NF_SHARE for synchronous dataset updates for classic format files (de‐
              fault is to buffer accesses),

              When a netCDF dataset is created, is is opened NF_WRITE.  The new  netCDF  dataset  is  in  define
              mode.   NF_64BIT_OFFSET.  to create a file in the 64-bit offset format (as opposed to classic for‐
              mat, the default).  NF_TRUE to create a netCDF-4/HDF5 file, and NF_CLASSIC_MODEL to guarantee that
              netCDF-4/HDF5 files maintain compatibility with the netCDF classic data model.

       integer function nf__create(character*(*) path, integer cmode, integer  initialsize,  integer  chunksize,
              integer ncid)

              Like nf_create() but has additional performance tuning parameters.

              The argument initialsize sets the initial size of the file at creation time.

              See nf__open() below for an explanation of the chunksize parameter.

       integer function nf_open(character*(*) path, integer mode, integer ncid)

              (Corresponds to ncopn() in version 2)

              Opens  a existing netCDF dataset at path returning a netCDF ID in ncid.  The type of access is de‐
              scribed by the mode parameter, which may include the bitwise-or of the following  flags:  NF_WRITE
              for read-write access (default read-only), NF_SHARE for synchronous dataset updates (default is to
              buffer accesses), and NF_LOCK (not yet implemented).

              As  of  NetCDF version 4.1, and if TRUE support was enabled when the NetCDF library was built, the
              path parameter may specify a TRUE URL. In this case, the access mode is forced to be read-only.

       integer function nf__open(character*(*) path, integer mode, integer chunksize, integer ncid)

              Like nf_open() but has an additional performance tuning parameter.

              The argument referenced by chunksize controls a space versus time tradeoff,  memory  allocated  in
              the netcdf library versus number of system calls.  Because of internal requirements, the value may
              not be set to exactly the value requested.  The actual value chosen is returned by reference.  Us‐
              ing  the  value NF_SIZEHINT_DEFAULT causes the library to choose a default.  How the system choses
              the default depends on the system.  On many systems, the "preferred I/O block size"  is  available
              from  the  stat()  system  call,  struct stat member st_blksize.  If this is available it is used.
              Lacking that, twice the system pagesize is used.  Lacking a call to discover the system  pagesize,
              we just set default chunksize to 8192.

              The chunksize is a property of a given open netcdf descriptor ncid, it is not a persistent proper‐
              ty of the netcdf dataset.

              As  with  nf__open(), the path parameter may specify a TRUE URL, but the tuning parameters are ig‐
              nored.

       integer function nf_redef(integer ncid)

              (Corresponds to ncredf() in version 2)

              Puts an open netCDF dataset into define mode, so dimensions,  variables,  and  attributes  can  be
              added or renamed and attributes can be deleted.

       integer function nf_enddef(integer ncid)

              (Corresponds to ncendf() in version 2)

              Takes  an open netCDF dataset out of define mode.  The changes made to the netCDF dataset while it
              was in define mode are checked and committed to disk if no problems occurred.   Some  data  values
              may  be  written as well, see "VARIABLE PREFILLING" below.  After a successful call, variable data
              can be read or written to the dataset.

       integer function nf__enddef(integer ncid, integer h_minfree, integer v_align, integer v_minfree,  integer
              r_align)

              Like nf_enddef() but has additional performance tuning parameters.

              Caution:  this  function  exposes  internals  of  the netcdf version 1 file format.  It may not be
              available on future netcdf implementations.

              The current netcdf file format has three sections, the "header"  section,  the  data  section  for
              fixed size variables, and the data section for variables which have an unlimited dimension (record
              variables).   The  header begins at the beginning of the file. The index (offset) of the beginning
              of the other two sections is contained in the header. Typically, there is  no  space  between  the
              sections. This causes copying overhead to accrue if one wishes to change the size of the sections,
              as  may  happen  when changing names of things, text attribute values, adding attributes or adding
              variables. Also, for buffered i/o, there may be advantages to aligning sections in certain ways.

              The minfree parameters allow one to control costs of future calls to  nf_redef(),  nf_enddef()  by
              requesting  that  minfree  bytes  be available at the end of the section.  The h_minfree parameter
              sets the pad at the end of the "header" section. The v_minfree parameter sets the pad at  the  end
              of the data section for fixed size variables.

              The  align  parameters  allow  one to set the alignment of the beginning of the corresponding sec‐
              tions. The beginning of the section is rounded up to an index which is a multiple of the align pa‐
              rameter. The flag value NF_ALIGN_CHUNK tells the library to use the chunksize (see above)  as  the
              align  parameter.   The v_align parameter controls the alignment of the beginning of the data sec‐
              tion for fixed size variables.  The r_align parameter controls the alignment of the  beginning  of
              the data section for variables which have an unlimited dimension (record variables).

              The  file format requires mod 4 alignment, so the align parameters are silently rounded up to mul‐
              tiples of 4. The usual call, nf_enddef(ncid) is equivalent to nf__enddef(ncid, 0, 4, 0, 4).

              The file format does not contain a "record size" value, this is calculated from the sizes  of  the
              record  variables.  This unfortunate fact prevents us from providing minfree and alignment control
              of the "records" in a netcdf file. If you add a variable which has  an  unlimited  dimension,  the
              third section will always be copied with the new variable added.

       integer function nf_sync(integer ncid)

              (Corresponds to ncsnc() in version 2)

              Unless  the  NF_SHARE  bit  is  set in nf_open() or nf_create(), accesses to the underlying netCDF
              dataset are buffered by the library. This  function  synchronizes  the  state  of  the  underlying
              dataset and the library.  This is done automatically by nf_close() and nf_enddef().

       integer function nf_abort(integer ncid)

              (Corresponds to ncabor() in version 2)

              You  don't need to call this function.  This function is called automatically by nf_close() if the
              netCDF was in define mode and something goes wrong with the commit.  If the netCDF  dataset  isn't
              in define mode, then this function is equivalent to nf_close().  If it is called after nf_redef(),
              but before nf_enddef(), the new definitions are not committed and the dataset is closed.  If it is
              called after nf_create() but before nf_enddef(), the dataset disappears.

       integer function nf_close(integer ncid)

              (Corresponds to ncclos() in version 2)

              Closes  an  open netCDF dataset.  If the dataset is in define mode, nf_enddef() will be called be‐
              fore closing.  After a dataset is closed, its ID may be reassigned to another dataset.

       integer function nf_inq(integer ncid, integer ndims, integer nvars, integer natts, integer unlimdimid)

       integer function nf_inq_ndims(integer ncid, integer ndims)

       integer function nf_inq_nvars(integer ncid, integer nvars)

       integer function nf_inq_natts(integer ncid, integer natts)

       integer function nf_inq_unlimdim(integer ncid, integer unlimdimid)

       integer function nf_inq_format(integer ncid, integer formatn)

              Use these functions to find out what is in a netCDF dataset.  Upon successful return,  ndims  will
              contain   the  number of dimensions defined for this netCDF dataset, nvars will contain the number
              of variables, natts will contain the number of attributes, and unlimdimid will contain the  dimen‐
              sion  ID  of the unlimited dimension if one exists, or 0 otherwise.  formatn will contain the ver‐
              sion number of the dataset <format>, one of NF_FORMAT_CLASSIC, NF_FORMAT_64BIT, NF_FORMAT_NETCDF4,
              or NF_FORMAT_NETCDF4_CLASSIC.

       integer function nf_def_dim(integer ncid, character*(*) name, integer len, integer dimid)

              (Corresponds to ncddef() in version 2)

              Adds a new dimension to an open netCDF dataset, which must be in define mode.  name is the  dimen‐
              sion name.  dimid will contain the dimension ID of the newly created dimension.

USER DEFINED TYPES

       Users  many define types for a netCDF-4/HDF5 file (unless the NF_CLASSIC_MODEL was used when the file was
       creates). Users may define compound types, variable length arrays, enumeration types, and opaque types.

       integer function nf_def_compound(integer ncid, integer size, character*(*) name, integer typeidp)

              Define a compound type.

       integer function nf_insert_compound(integer ncid, integer , character*(*) name, integer  offset,  integer
              field_typeid)

              Insert  an  element  into  a compound type. May not be done after type has been used, or after the
              type has been written by an enddef.

       integer function nf_insert_array_compound(integer ncid, integer , character*(*) name, integer offset, in‐
              teger field_typeid, integer ndims, integer dim_sizes(1))

              Insert an array into a compound type.

       integer function nf_inq_type(integer ncid, integer , character*(*) name, integer sizep)

              Learn about a type.

       integer function nf_inq_compound(integer ncid, integer  ,  character*(*)  name,  integer  sizep,  integer
              nfieldsp)

       integer function nf_inq_compound_name(integer ncid, integer , character*(*) name)

       integer function nf_inq_compound_size(integer ncid, integer , integer sizep)

       integer function nf_inq_compound_nfields(integer ncid, integer , integer nfieldsp)

       integer function nf_inq_compound_fieldname(integer ncid, integer , integer fieldid, character*(*) name)

       integer function nf_inq_compound_fieldindex(integer ncid, integer , character*(*) name, integer fieldidp)

       integer function nf_inq_compound_fieldoffset(integer ncid, integer , integer fieldid, integer offsetp)

       integer function nf_inq_compound_fieldtype(integer ncid, integer , integer fieldid, integer field_typeid)

       integer function nf_inq_compound_fieldndims(integer ncid, integer , integer fieldid, integer ndims)

       integer   function  nf_inq_compound_fielddim_sizes(integer  ncid,  integer  ,  integer  fieldid,  integer
              dim_sizes(1))

              Learn about a compound type.

       integer function nf_def_vlen(integer ncid, character*(*) name, integer base_typeid, integer xtypep)

              Create a variable length array type.

       integer function nf_inq_vlen(integer ncid, integer , character*(*)  name,  integer  datum_sizep,  integer
              base_nc_typep)

              Learn about a variable length array type.

       integer function nf_free_vlen(nc_vlen_t *vl)

              Free memory comsumed by reading data of a variable length array type.

       integer function nf_put_vlen_element(integer ncid, integer , void * vlen_element, integer len, void * da‐
              ta)

              Write one VLEN.

       integer function nf_get_vlen_element(integer ncid, integer , void * vlen_element, integer len, void * da‐
              ta)

              Read one VLEN.

       integer function nf_free_string(integer len, char **data)

              Free memory comsumed by reading data of a string type.

       integer function nf_inq_user_type(integer ncid, integer , character*(*) name, integer , integer , integer
              , integer )

              Learn about a user define type.

       integer function nf_def_enum(integer ncid, integer base_typeid, character*(*) name, integer typeidp)

              Define an enumeration type.

       integer function nf_insert_enum(integer ncid, integer base_typeid, character*(*) name, const void *value)

              Insert a name-value pair into enumeration type.

       integer  function  nf_inq_enum_member(integer  ncid, integer xtype, integer idx, character*(*) name, void
              *value)

       integer function nf_inq_enum_ident(integer ncid, integer xtype, integer  idx,  integer*8  value,  charac‐
              ter*(*) identifier)

              Learn about a name-value pair into enumeration type.

       integer function nf_def_opaque(integer ncid, integer size, character*(*) name, integer xtypep)

              Create an opaque type.

       integer function nf_inq_opaque(integer ncid, integer xtype, character*(*) name, integer sizep)

              Learn about opaque type.

GROUPS

       Users may organize data into hierarchical groups in netCDF-4/HDF5 files (unless NF_CLASSIC_MODEL was used
       when creating the file).

       integer function nf_inq_grps(integer ncid, integer numgrps, integer ncids(1))

              Learn how many groups (and their ncids) are available from the group represented by ncid.

       integer function nf_inq_grpname(integer ncid, character*(*) name)

       integer function nf_inq_grpname_full(integer ncid, integer len, character*(*) name)

       integer function nf_inq_grpname_len(integer ncid, integer len)

       integer function nf_inq_grp_parent(integer ncid, integer ncid)

       integer function nf_inq_grp_ncid(integer ncid, character*(*) name, integer ncid)

       integer function nf_inq_full_ncid(integer ncid, character*(*) name, integer ncid)

              Learn about a group.

       integer function nf_inq_varids(integer ncid, integer nvars, integer )

              Get the varids in a group.

       integer function nf_inq_dimids(integer ncid, integer ndims, integer dimids, integer include_parents)

              Get the dimids in a group and (potentially) its parents.

       integer function nf_inq_typeids(integer ncid, integer ntypes, integer typeids(1))

              Get the typeids of user-defined types in a group.

       integer function nf_def_grp(integer ncid, character*(*) name, integer ncid)

              Create a group.

DIMENSIONS


       integer function nf_inq_dimid(integer ncid, character*(*) name, integer dimid)

              (Corresponds to ncdid() in version 2)

              Given a dimension name, returns the ID of a netCDF dimension in dimid.

       integer function nf_inq_dim(integer ncid, integer dimid, character*(*) name, integer len)

       integer function nf_inq_dimname(integer ncid, integer dimid, character*(*) name)

       integer function nf_inq_dimlen(integer ncid, integer dimid, integer len)

              Use these functions to find out about a dimension.

              name should be  big enough (NF_MAX_NAME) to hold the dimension name as the name will be copied in‐
              to  your  storage.   The length return parameter, len will contain the size of the dimension.  For
              the unlimited dimension, the returned length is the current maximum value used  for  writing  into
              any of the variables which use the dimension.

       integer function nf_rename_dim(integer ncid, integer dimid, character*(*) name)

              (Corresponds to ncdren() in version 2)

              Renames  an  existing dimension in an open netCDF dataset.  If the new name is longer than the old
              name, the netCDF dataset must be in define mode.  You cannot rename a dimension to have  the  same
              name as another dimension.

VARIABLES


       integer  function  nf_def_var(integer  ncid,  character*(*)  name,  integer xtype, integer ndims, integer
              dimids(1), integer varid)

              (Corresponds to ncvdef() in version 2)

              Adds a new variable to a netCDF dataset. The netCDF must be in define mode.  varid will be set  to
              the netCDF variable ID.

       integer function nf_inq_varid(integer ncid, character*(*) name, integer varid)

              (Corresponds to ncvid() in version 2)

              Returns the ID of a netCDF variable in varid given its name.

       integer  function  nf_inq_var(integer  ncid,  integer  varid,  character*(*) name, integer xtype, integer
              ndims, integer dimids(1), integer natts)

       integer function nf_inq_varname(integer ncid, integer varid, character*(*) name)

       integer function nf_inq_vartype(integer ncid, integer varid, integer xtype)

       integer function nf_inq_varndims(integer ncid, integer varid, integer ndims)

       integer function nf_inq_vardimid(integer ncid, integer varid, integer dimids(1))

       integer function nf_inq_varnatts(integer ncid, integer varid, integer natts)

              Returns information about a netCDF variable, given its ID.

       integer function nf_rename_var(integer ncid, integer varid, character*(*) name)

              (Corresponds to ncvren() in version 2)

              Changes the name of a netCDF variable.  If the new name is longer than the old  name,  the  netCDF
              must be in define mode.  You cannot rename a variable to have the name of any existing variable.

VARIABLES in NETCDF-4 FILES

       The  following functions may only be used on variables in a netCDF-4/HDF5 data file. These functions must
       be called after the variable is defined, but before an enddef call.

       integer function nf_def_var_deflate(integer ncid, integer varid, integer shuffle, integer deflate,  inte‐
       ger deflate_level)

       Turn on compression and/or shuffle filter. (Shuffle filter is only useful for integer data.)

       integer  function nf_inq_var_deflate(integer ncid, integer varid, integer shufflep, integer deflatep, in‐
              teger deflate_levelp)

              Learn about a variable's deflate settings.

       integer function nf_def_var_fletcher32(integer ncid, integer varid, integer fletcher32)

              Turn on checksumming for a variable.

       integer function nf_inq_var_fletcher32(integer ncid, integer varid, integer fletcher32)

              Learn about checksumming for a variable.

       integer function nf_def_var_chunking(integer ncid, integer varid,  integer  storage,  integer  chunksize‐
              sp(1))

              Set chunksizes for a variable.

       integer  function  nf_inq_var_chunking(integer  ncid, integer varid, integer storagep, integer chunksize‐
              sp(1))

              Learn about chunksizes for a variable.

       integer function nf_def_var_fill(integer ncid, integer varid, integer no_fill, integer chunksizesp(1))

              Set a fill value for a variable.

       integer function nf_inq_var_fill(integer ncid, integer varid, integer storagep, integer chunksizesp(1))

              Learn the fill value for a variable.

       integer function nf_def_var_endian(integer ncid, integer varid, integer endian)

              Set endianness of variable.

       integer function nf_inq_var_endian(integer ncid, integer varid, integer endianp)

              Learn the endianness of a variable.

WRITING AND READING WHOLE VARIABLES


       integer function nf_put_var_text(integer ncid, integer varid, character*(*) out)

       integer function nf_put_var_int1(integer ncid, integer varid, integer*1 out(1))

       integer function nf_put_var_int2(integer ncid, integer varid, integer*2 out(1))

       integer function nf_put_var_int(integer ncid, integer varid, integer out(1))

       integer function nf_put_var_real(integer ncid, integer varid, real out(1))

       integer function nf_put_var_double(integer ncid, integer varid, doubleprecision out(1))

       integer function nf_put_var_ubyte(integer ncid, integer varid, integer*1 out(1))

       integer function nf_put_var_ushort(integer ncid, integer varid, integer*2 out(1))

       integer function nf_put_var_uint(integer ncid, integer varid, integer*4 out(1))

       integer function nf_put_var_int64(integer ncid, integer varid, integer*8 out(1))

       integer function nf_put_var_uint64(integer ncid, integer varid, integer*8 out(1))

       integer function nf_put_var_string(integer ncid, integer varid, character* out(1))

              Writes an entire netCDF variable (i.e. all the values).  The netCDF dataset must be  open  and  in
              data mode.  The type of the data is specified in the function name, and it is converted to the ex‐
              ternal type of the specified variable, if possible, otherwise an NF_ERANGE error is returned. Note
              that  rounding  is  not performed during the conversion. Floating point numbers are truncated when
              converted to integers.

       integer function nf_get_var_text(integer ncid, integer varid, character*(*) in)

       integer function nf_get_var_int1(integer ncid, integer varid, integer*1 in(1))

       integer function nf_get_var_int2(integer ncid, integer varid, integer*2 in(1))

       integer function nf_get_var_int(integer ncid, integer varid, integer in(1))

       integer function nf_get_var_real(integer ncid, integer varid, real in(1))

       integer function nf_get_var_double(integer ncid, integer varid, doubleprecision in(1))

       integer function nf_get_var_ubyte(integer ncid, integer varid, integer*1 in(1))

       integer function nf_get_var_ushort(integer ncid, integer varid, integer*2 in(1))

       integer function nf_get_var_uint(integer ncid, integer varid, integer*4 in(1))

       integer function nf_get_var_int64(integer ncid, integer varid, integer*8 in(1))

       integer function nf_get_var_uint64(integer ncid, integer varid, integer*8 in(1))

       integer function nf_get_var_string(integer ncid, integer varid, character* in(1))

              Reads an entire netCDF variable (i.e. all the values).  The netCDF dataset must be open and in da‐
              ta mode.  The data is converted from the external type of the specified variable, if necessary, to
              the type specified in the function name.  If conversion is not possible, an NF_ERANGE error is re‐
              turned.

WRITING AND READING ONE DATUM


       integer function nf_put_var1_text(integer ncid, integer varid, integer index(1), character*1 *out)

       integer function nf_put_var1_int1(integer ncid, integer varid, integer index(1), integer*1 *out)

       integer function nf_put_var1_int2(integer ncid, integer varid, integer index(1), integer*2 *out)

       integer function nf_put_var1_int(integer ncid, integer varid, integer index(1), integer *out)

       integer function nf_put_var1_real(integer ncid, integer varid, integer index(1), real *out)

       integer function nf_put_var1_double(integer ncid, integer varid, integer index(1), doubleprecision *out)

       integer function nf_put_var1_ubyte(integer ncid, integer varid, integer index(1), integer*1 *out)

       integer function nf_put_var1_ushort(integer ncid, integer varid, integer index(1), integer*2 *out)

       integer function nf_put_var1_uint(integer ncid, integer varid, integer index(1), integer*4 *out)

       integer function nf_put_var1_int64(integer ncid, integer varid, integer index(1), integer*8 *out)

       integer function nf_put_var1_uint64(integer ncid, integer varid, integer index(1), integer*8 *out)

       integer function nf_put_var1_string(integer ncid, integer varid, integer index(1), character* *out)

              Puts a single data value into a variable at the position index of an open netCDF dataset  that  is
              in  data mode.  The type of the data is specified in the function name, and it is converted to the
              external type of the specified variable, if possible, otherwise an NF_ERANGE error is returned.

       integer function nf_get_var1_text(integer ncid, integer varid, integer index(1), character*1 in)

       integer function nf_get_var1_int1(integer ncid, integer varid, integer index(1), integer*1 in)

       integer function nf_get_var1_int2(integer ncid, integer varid, integer index(1), integer*2 in)

       integer function nf_get_var1_int(integer ncid, integer varid, integer index(1), integer in)

       integer function nf_get_var1_real(integer ncid, integer varid, integer index(1), real in)

       integer function nf_get_var1_double(integer ncid, integer varid, integer index(1), doubleprecision in)

       integer function nf_get_var1_ubyte(integer ncid, integer varid, integer index(1), integer*1 in)

       integer function nf_get_var1_ushort(integer ncid, integer varid, integer index(1), integer*2 in)

       integer function nf_get_var1_uint(integer ncid, integer varid, integer index(1), integer*4 in)

       integer function nf_get_var1_int64(integer ncid, integer varid, integer index(1), integer*8 in)

       integer function nf_get_var1_uint64(integer ncid, integer varid, integer index(1), integer*8 in)

       integer function nf_get_var1_string(integer ncid, integer varid, integer index(1), character* in)

              Gets a single data value from a variable at the position index of an open netCDF dataset  that  is
              in  data  mode.  The data is converted from the external type of the specified variable, if neces‐
              sary, to the type specified in the function name.  If conversion is not possible, an NF_ERANGE er‐
              ror is returned.

WRITING AND READING AN ARRAY


       integer function nf_put_vara_text(integer ncid, integer varid, integer start(1), integer count(1),  char‐
              acter*(*) out)

       integer  function nf_put_vara_int1(integer ncid, integer varid, integer start(1), integer count(1), inte‐
              ger*1 out(1))

       integer function nf_put_vara_int2(integer ncid, integer varid, integer start(1), integer count(1),  inte‐
              ger*2 out(1))

       integer function nf_put_vara_int(integer ncid, integer varid, integer start(1), integer count(1), integer
              out(1))

       integer  function  nf_put_vara_real(integer ncid, integer varid, integer start(1), integer count(1), real
              out(1))

       integer function nf_put_vara_double(integer ncid, integer varid, integer start(1), integer count(1), dou‐
              bleprecision out(1))

       integer function nf_put_vara_ubyte(integer ncid, integer varid, integer start(1), integer count(1), inte‐
              ger*1 out(1))

       integer function nf_put_vara_ushort(integer ncid, integer varid, integer start(1), integer count(1),  in‐
              teger*2 out(1))

       integer  function nf_put_vara_uint(integer ncid, integer varid, integer start(1), integer count(1), inte‐
              ger*4 out(1))

       integer function nf_put_vara_int64(integer ncid, integer varid, integer start(1), integer count(1), inte‐
              ger*8 out(1))

       integer function nf_put_vara_uint64(integer ncid, integer varid, integer start(1), integer count(1),  in‐
              teger*8 out(1))

       integer  function  nf_put_vara_string(integer  ncid,  integer  varid, integer start(1), integer count(1),
              character* out(1))

              Writes an array section of values into a netCDF variable of an open netCDF dataset, which must  be
              in  data  mode.   The  array  section  is specified by the start and count vectors, which give the
              starting index and count of values along each dimension of the specified variable.   The  type  of
              the  data is specified in the function name and is converted to the external type of the specified
              variable, if possible, otherwise an NF_ERANGE error is returned.

       integer function nf_get_vara_text(integer ncid, integer varid, integer start(1), integer count(1),  char‐
              acter*(*) in)

       integer  function nf_get_vara_int1(integer ncid, integer varid, integer start(1), integer count(1), inte‐
              ger*1 in(1))

       integer function nf_get_vara_int2(integer ncid, integer varid, integer start(1), integer count(1),  inte‐
              ger*2 in(1))

       integer function nf_get_vara_int(integer ncid, integer varid, integer start(1), integer count(1), integer
              in(1))

       integer  function  nf_get_vara_real(integer ncid, integer varid, integer start(1), integer count(1), real
              in(1))

       integer function nf_get_vara_double(integer ncid, integer varid, integer start(1), integer count(1), dou‐
              bleprecision in(1))

       integer function nf_get_vara_ubyte(integer ncid, integer varid, integer start(1), integer count(1), inte‐
              ger*1 in(1))

       integer function nf_get_vara_ushort(integer ncid, integer varid, integer start(1), integer count(1),  in‐
              teger*2 in(1))

       integer  function nf_get_vara_uint(integer ncid, integer varid, integer start(1), integer count(1), inte‐
              ger*4 in(1))

       integer function nf_get_vara_int64(integer ncid, integer varid, integer start(1), integer count(1), inte‐
              ger*8 in(1))

       integer function nf_get_vara_uint64(integer ncid, integer varid, integer start(1), integer count(1),  in‐
              teger*8 in(1))

       integer  function  nf_get_vara_string(integer  ncid,  integer  varid, integer start(1), integer count(1),
              character* in(1))

              Reads an array section of values from a netCDF variable of an open netCDF dataset, which  must  be
              in  data  mode.   The  array  section  is specified by the start and count vectors, which give the
              starting index and count of values along each dimension of the specified variable.   The  data  is
              converted from the external type of the specified variable, if necessary, to the type specified in
              the function name.  If conversion is not possible, an NF_ERANGE error is returned.

WRITING AND READING A SLICED ARRAY


       integer  function nf_put_vars_text(integer ncid, integer varid, integer start(1), integer count(1), inte‐
              ger stride(1), character*(*) out)

       integer function nf_put_vars_int1(integer ncid, integer varid, integer start(1), integer count(1),  inte‐
              ger stride(1), integer*1 out(1))

       integer  function nf_put_vars_int2(integer ncid, integer varid, integer start(1), integer count(1), inte‐
              ger stride(1), integer*2 out(1))

       integer function nf_put_vars_int(integer ncid, integer varid, integer start(1), integer count(1), integer
              stride(1), integer out(1))

       integer function nf_put_vars_real(integer ncid, integer varid, integer start(1), integer count(1),  inte‐
              ger stride(1), real out(1))

       integer  function nf_put_vars_double(integer ncid, integer varid, integer start(1), integer count(1), in‐
              teger stride(1), doubleprecision out(1))

       integer function nf_put_vars_ubyte(integer ncid, integer varid, integer start(1), integer count(1), inte‐
              ger stride(1), integer*1 out(1))

       integer function nf_put_vars_ushort(integer ncid, integer varid, integer start(1), integer count(1),  in‐
              teger stride(1), integer*2 out(1))

       integer  function nf_put_vars_uint(integer ncid, integer varid, integer start(1), integer count(1), inte‐
              ger stride(1), integer*4 out(1))

       integer function nf_put_vars_int64(integer ncid, integer varid, integer start(1), integer count(1), inte‐
              ger stride(1), integer*8 out(1))

       integer function nf_put_vars_uint64(integer ncid, integer varid, integer start(1), integer count(1),  in‐
              teger stride(1), integer*8 out(1))

       integer  function nf_put_vars_string(integer ncid, integer varid, integer start(1), integer count(1), in‐
              teger stride(1), character* out(1))

              These functions are used for strided output, which is like  the  array  section  output  described
              above,  except  that  the  sampling stride (the interval between accessed values) is specified for
              each dimension.  For an explanation of the sampling stride vector, see COMMON  ARGUMENTS  DESCRIP‐
              TIONS below.

       integer  function nf_get_vars_text(integer ncid, integer varid, integer start(1), integer count(1), inte‐
              ger stride(1), character*(*) in)

       integer function nf_get_vars_int1(integer ncid, integer varid, integer start(1), integer count(1),  inte‐
              ger stride(1), integer*1 in(1))

       integer  function nf_get_vars_int2(integer ncid, integer varid, integer start(1), integer count(1), inte‐
              ger stride(1), integer*2 in(1))

       integer function nf_get_vars_int(integer ncid, integer varid, integer start(1), integer count(1), integer
              stride(1), integer in(1))

       integer function nf_get_vars_real(integer ncid, integer varid, integer start(1), integer count(1),  inte‐
              ger stride(1), real in(1))

       integer  function nf_get_vars_double(integer ncid, integer varid, integer start(1), integer count(1), in‐
              teger stride(1), doubleprecision in(1))

       integer function nf_get_vars_ubyte(integer ncid, integer varid, integer start(1), integer count(1), inte‐
              ger stride(1), integer*1 in(1))

       integer function nf_get_vars_ushort(integer ncid, integer varid, integer start(1), integer count(1),  in‐
              teger stride(1), integer*2 in(1))

       integer  function nf_get_vars_uint(integer ncid, integer varid, integer start(1), integer count(1), inte‐
              ger stride(1), integer*4 in(1))

       integer function nf_get_vars_int64(integer ncid, integer varid, integer start(1), integer count(1), inte‐
              ger stride(1), integer*8 in(1))

       integer function nf_get_vars_uint64(integer ncid, integer varid, integer start(1), integer count(1),  in‐
              teger stride(1), integer*8 in(1))

       integer  function nf_get_vars_string(integer ncid, integer varid, integer start(1), integer count(1), in‐
              teger stride(1), character* in(1))

              These functions are used for strided input, which is like the array section input described above,
              except that the sampling stride (the interval between accessed values) is specified for  each  di‐
              mension.   For an explanation of the sampling stride vector, see COMMON ARGUMENTS DESCRIPTIONS be‐
              low.

WRITING AND READING A MAPPED ARRAY


       integer function nf_put_varm_text(integer ncid, integer varid, integer start(1), integer count(1),  inte‐
              ger stride(1), imap, character*(*) out)

       integer  function nf_put_varm_int1(integer ncid, integer varid, integer start(1), integer count(1), inte‐
              ger stride(1), imap, integer*1 out(1))

       integer function nf_put_varm_int2(integer ncid, integer varid, integer start(1), integer count(1),  inte‐
              ger stride(1), imap, integer*2 out(1))

       integer function nf_put_varm_int(integer ncid, integer varid, integer start(1), integer count(1), integer
              stride(1), imap, integer out(1))

       integer  function nf_put_varm_real(integer ncid, integer varid, integer start(1), integer count(1), inte‐
              ger stride(1), imap, real out(1))

       integer function nf_put_varm_double(integer ncid, integer varid, integer start(1), integer count(1),  in‐
              teger stride(1), imap, doubleprecision out(1))

       integer function nf_put_varm_ubyte(integer ncid, integer varid, integer start(1), integer count(1), inte‐
              ger stride(1), imap, integer*1 out(1))

       integer  function nf_put_varm_ushort(integer ncid, integer varid, integer start(1), integer count(1), in‐
              teger stride(1), imap, integer*2 out(1))

       integer function nf_put_varm_uint(integer ncid, integer varid, integer start(1), integer count(1),  inte‐
              ger stride(1), imap, integer*4 out(1))

       integer function nf_put_varm_int64(integer ncid, integer varid, integer start(1), integer count(1), inte‐
              ger stride(1), imap, integer*8 out(1))

       integer  function nf_put_varm_uint64(integer ncid, integer varid, integer start(1), integer count(1), in‐
              teger stride(1), imap, integer*8 out(1))

       integer function nf_put_varm_string(integer ncid, integer varid, integer start(1), integer count(1),  in‐
              teger stride(1), imap, character* out(1))

              These  functions  are used for mapped output, which is like strided output described above, except
              that an additional index mapping vector is provided to specify the in-memory  arrangement  of  the
              data  values.   For  an explanation of the index mapping vector, see COMMON ARGUMENTS DESCRIPTIONS
              below.

       integer function nf_get_varm_text(integer ncid, integer varid, integer start(1), integer count(1),  inte‐
              ger stride(1), imap, character*(*) in)

       integer  function nf_get_varm_int1(integer ncid, integer varid, integer start(1), integer count(1), inte‐
              ger stride(1), imap, integer*1 in(1))

       integer function nf_get_varm_int2(integer ncid, integer varid, integer start(1), integer count(1),  inte‐
              ger stride(1), imap, integer*2 in(1))

       integer function nf_get_varm_int(integer ncid, integer varid, integer start(1), integer count(1), integer
              stride(1), imap, integer in(1))

       integer  function nf_get_varm_real(integer ncid, integer varid, integer start(1), integer count(1), inte‐
              ger stride(1), imap, real in(1))

       integer function nf_get_varm_double(integer ncid, integer varid, integer start(1), integer count(1),  in‐
              teger stride(1), imap, doubleprecision in(1))

       integer function nf_get_varm_ubyte(integer ncid, integer varid, integer start(1), integer count(1), inte‐
              ger stride(1), imap, integer*1 in(1))

       integer  function nf_get_varm_ushort(integer ncid, integer varid, integer start(1), integer count(1), in‐
              teger stride(1), imap, integer*2 in(1))

       integer function nf_get_varm_uint(integer ncid, integer varid, integer start(1), integer count(1),  inte‐
              ger stride(1), imap, integer*4 in(1))

       integer function nf_get_varm_int64(integer ncid, integer varid, integer start(1), integer count(1), inte‐
              ger stride(1), imap, integer*8 in(1))

       integer  function nf_get_varm_uint64(integer ncid, integer varid, integer start(1), integer count(1), in‐
              teger stride(1), imap, integer*8 in(1))

       integer function nf_get_varm_string(integer ncid, integer varid, integer start(1), integer count(1),  in‐
              teger stride(1), imap, character* in(1))

              These  functions  are  used  for mapped input, which is like strided input described above, except
              that an additional index mapping vector is provided to specify the in-memory  arrangement  of  the
              data  values.   For  an explanation of the index mapping vector, see COMMON ARGUMENTS DESCRIPTIONS
              below.

ATTRIBUTES


       integer function nf_put_att_text(integer ncid, integer varid, character*(*) name, integer xtype,  integer
              len, character*(*) out)

       integer  function nf_put_att_int1(integer ncid, integer varid, character*(*) name, integer xtype, integer
              len, integer*1 out(1))

       integer function nf_put_att_int2(integer ncid, integer varid, character*(*) name, integer xtype,  integer
              len, integer*2 out(1))

       integer  function  nf_put_att_int(integer ncid, integer varid, character*(*) name, integer xtype, integer
              len, integer out(1))

       integer function nf_put_att_real(integer ncid, integer varid, character*(*) name, integer xtype,  integer
              len, real out(1))

       integer  function nf_put_att_double(integer ncid, integer varid, character*(*) name, integer xtype, inte‐
              ger len, doubleprecision out(1))

       integer function nf_put_att_ubyte(integer ncid, integer varid, character*(*) name, integer xtype, integer
              len, integer*1 out(1))

       integer function nf_put_att_ushort(integer ncid, integer varid, character*(*) name, integer xtype,  inte‐
              ger len, integer*2 out(1))

       integer  function nf_put_att_uint(integer ncid, integer varid, character*(*) name, integer xtype, integer
              len, integer*4 out(1))

       integer function nf_put_att_int64(integer ncid, integer varid, character*(*) name, integer xtype, integer
              len, integer*8 out(1))

       integer function nf_put_att_uint64(integer ncid, integer varid, character*(*) name, integer xtype,  inte‐
              ger len, integer*8 out(1))

       integer  function nf_put_att_string(integer ncid, integer varid, character*(*) name, integer xtype, inte‐
              ger len, character* out(1))

       integer function nf_put_att(integer ncid, integer varid, character*(*) name, integer xtype, integer  len,
              void * ip)

       integer function nf_get_att(integer ncid, integer varid, character*(*) name, void * ip)

              Unlike variables, attributes do not have separate functions for defining and writing values.  This
              family  of  functions defines a new attribute with a value or changes the value of an existing at‐
              tribute.  If the attribute is new, or if the space  required  to  store  the  attribute  value  is
              greater  than  before, the netCDF dataset must be in define mode.  The parameter len is the number
              of values from out to transfer.  It is often one, except that for nf_put_att_text() it will usual‐
              ly be len_trim(out).

              For these functions, the type component of the function name refers to the in-memory type  of  the
              value, whereas the xtype argument refers to the external type for storing the value.  An NF_ERANGE
              error results if a conversion between these types is not possible.  In this case the value is rep‐
              resented with the appropriate fill-value for the associated external type.

       integer function nf_inq_attname(integer ncid, integer varid, integer attnum, character*(*) name)

              Gets  the name of an attribute, given its variable ID and attribute number.  This function is use‐
              ful in generic applications that need to get the names of all the  attributes  associated  with  a
              variable,  since  attributes  are accessed by name rather than number in all other attribute func‐
              tions.  The number of an attribute is more volatile than the name, since it can change when  other
              attributes of the same variable are deleted.  The attributes for each variable are numbered from 1
              (the first attribute) to nvatts, where nvatts is the number of attributes for the variable, as re‐
              turned from a call to nf_inq_varnatts().

       integer function nf_inq_att(integer ncid, integer varid, character*(*) name, integer xtype, integer len)

       integer function nf_inq_attid(integer ncid, integer varid, character*(*) name, integer attnum)

       integer function nf_inq_atttype(integer ncid, integer varid, character*(*) name, integer xtype)

       integer function nf_inq_attlen(integer ncid, integer varid, character*(*) name, integer len)

              These  functions return information about a netCDF attribute, given its variable ID and name.  The
              information returned is the external type in xtype and the number of elements in the attribute  as
              len.

       integer  function nf_copy_att(integer ncid, integer varid_in, character*(*) name, integer ncid_out, inte‐
              ger varid_out)

              Copies an attribute from one netCDF dataset to another.  It can also be used to copy an  attribute
              from  one variable to another within the same netCDF.  ncid_in is the netCDF ID of an input netCDF
              dataset from which the attribute will be copied.  varid_in is the ID of the variable in the  input
              netCDF dataset from which the attribute will be copied, or NF_GLOBAL for a global attribute.  name
              is  the name of the attribute in the input netCDF dataset to be copied.  ncid_out is the netCDF ID
              of the output netCDF dataset to which the attribute will be copied.  It is permissible for the in‐
              put and output netCDF ID's to be the same.  The output netCDF dataset should be in define mode  if
              the attribute to be copied does not already exist for the target variable, or if it would cause an
              existing  target  attribute  to  grow.   varid_out  is the ID of the variable in the output netCDF
              dataset to which the attribute will be copied, or NF_GLOBAL to copy to a global attribute.

       integer function nf_rename_att(integer ncid, integer varid, character*(*) name, character*(*) newname)

              Changes the name of an attribute.  If the new name is longer than the original  name,  the  netCDF
              must be in define mode.  You cannot rename an attribute to have the same name as another attribute
              of  the  same  variable.   name is the original attribute name.  newname is the new name to be as‐
              signed to the specified attribute.  If the new name is  longer  than  the  old  name,  the  netCDF
              dataset must be in define mode.

       integer function nf_del_att(integer ncid, integer varid, character*(*) name)

              Deletes an attribute from a netCDF dataset.  The dataset must be in define mode.

       integer function nf_get_att_text(integer ncid, integer varid, character*(*) name, character*(*) in)

       integer function nf_get_att_int1(integer ncid, integer varid, character*(*) name, integer*1 in(1))

       integer function nf_get_att_int2(integer ncid, integer varid, character*(*) name, integer*2 in(1))

       integer function nf_get_att_int(integer ncid, integer varid, character*(*) name, integer in(1))

       integer function nf_get_att_real(integer ncid, integer varid, character*(*) name, real in(1))

       integer  function  nf_get_att_double(integer  ncid,  integer  varid,  character*(*) name, doubleprecision
              in(1))

       integer function nf_get_att_ubyte(integer ncid, integer varid, character*(*) name, integer*1 in(1))

       integer function nf_get_att_ushort(integer ncid, integer varid, character*(*) name, integer*2 in(1))

       integer function nf_get_att_uint(integer ncid, integer varid, character*(*) name, integer*4 in(1))

       integer function nf_get_att_int64(integer ncid, integer varid, character*(*) name, integer*8 in(1))

       integer function nf_get_att_uint64(integer ncid, integer varid, character*(*) name, integer*8 in(1))

       integer function nf_get_att_string(integer ncid, integer varid, character*(*) name, character* in(1))

              Gets the value(s) of a netCDF attribute, given its variable ID and name.  Converts from the exter‐
              nal type to the type specified in the function name, if possible, otherwise returns  an  NF_ERANGE
              error.   All  elements of the vector of attribute values are returned, so you must allocate enough
              space to hold them.  If you don't know how much space to reserve, call  nf_inq_attlen()  first  to
              find out the length of the attribute.

COMMON ARGUMENT DESCRIPTIONS

       In this section we define some common arguments which are used in the "FUNCTION DESCRIPTIONS" section.

       integer ncid
              is the netCDF ID returned from a previous, successful call to nf_open() or nf_create()

       character*(*) name
              is the name of a dimension, variable, or attribute. The names of dimensions, variables and attrib‐
              utes  consist of arbitrary sequences of alphanumeric characters (as well as underscore '_', period
              '.' and hyphen '-'), beginning with a letter or underscore. (However names commencing with  under‐
              score are reserved for system use.) Case is significant in netCDF names. A zero-length name is not
              allowed.

              The maximum allowable number of characters
               is NF_MAX_NAME.

       integer xtype
              specifies  the  external  data type of a netCDF variable or attribute and is one of the following:
              NF_BYTE, NF_CHAR, NF_SHORT, NF_INT, NF_FLOAT, or NF_DOUBLE.  These are used to specify 8-bit inte‐
              gers, characters, 16-bit integers, 32-bit integers, 32-bit IEEE floating point numbers, and 64-bit
              IEEE floating-point numbers, respectively.

       integer dimids(1)
              is a vector of dimension ID's and defines the shape of a netCDF variable.  The size of the  vector
              shall  be  greater  than  or  equal  to  the  rank (i.e. the number of dimensions) of the variable
              (ndims).  The vector shall be ordered by the speed with which a dimension varies: dimids(1)  shall
              be the dimension ID of the most rapidly varying dimension and dimids(ndims) shall be the dimension
              ID of the most slowly varying dimension.  The maximum possible number of dimensions for a variable
              is given by the symbolic constant NF_MAX_VAR_DIMS.

       integer dimid
              is  the ID of a netCDF dimension.  netCDF dimension ID's are allocated sequentially from the posi‐
              tive integers beginning with 1.

       integer ndims
              is either the total number of dimensions in a netCDF dataset or the rank (i.e. the number  of  di‐
              mensions) of a netCDF variable.  The value shall not be negative or greater than the symbolic con‐
              stant NF_MAX_VAR_DIMS.

       integer varid
              is  the  ID  of  a  netCDF  variable or (for the attribute-access functions) the symbolic constant
              NF_GLOBAL, which is used to reference global attributes.  netCDF variable ID's are  allocated  se‐
              quentially from the positive integers beginning with 1.

       integer natts
              is  the number of global attributes in a netCDF dataset  for the nf_inquire() function or the num‐
              ber of attributes associated with a netCDF variable for the nf_varinq() function.

       integer index(1)
              specifies the indicial coordinates of the netCDF data value to be accessed.  The indices start  at
              1;  thus,  for  example, the first data value of a two-dimensional variable is (1,1).  The size of
              the vector shall be at least the rank of the associated netCDF variable  and  its  elements  shall
              correspond, in order, to the variable's dimensions.

       integer start(1)
              specifies  the  starting point for accessing a netCDF variable's data values in terms of the indi‐
              cial coordinates of the corner of the array section.  The indices start at 1; thus, the first data
              value of a variable is (1, 1, ..., 1).  The size of the vector shall be at least the rank  of  the
              associated  netCDF  variable and its elements shall correspond, in order, to the variable's dimen‐
              sions.

       integer count(1)
              specifies the number of indices selected along each dimension of the array section.  Thus, to  ac‐
              cess  a  single  value, for example, specify count as (1, 1, ..., 1).  Note that, for strided I/O,
              this argument must be adjusted to be compatible with the stride and start arguments  so  that  the
              interaction  of the three does not attempt to access an invalid data co-ordinate.  The elements of
              the count vector correspond, in order, to the variable's dimensions.

       integer stride(1)
              specifies the sampling interval along each dimension of the netCDF variable.   The elements of the
              stride vector correspond, in order, to the netCDF variable's dimensions (stride(1)) gives the sam‐
              pling interval along the most rapidly varying dimension of the netCDF variable).  Sampling  inter‐
              vals  are  specified  in type-independent units of elements (a value of 1 selects consecutive ele‐
              ments of the netCDF variable along the corresponding dimension, a value of 2 selects  every  other
              element, etc.).

       imap   specifies  the  mapping between the dimensions of a netCDF variable and the in-memory structure of
              the internal data array.  The elements of the index mapping vector correspond, in  order,  to  the
              netCDF  variable's  dimensions  (imap(1) gives the distance between elements of the internal array
              corresponding to the most rapidly varying dimension of the netCDF  variable).   Distances  between
              elements  are  specified in type-independent units of elements (the distance between internal ele‐
              ments that occupy adjacent memory locations is 1 and not the element's byte-length  as  in  netCDF
              2).

VARIABLE PREFILLING

       By  default,  the  netCDF interface sets the values of all newly-defined variables of finite length (i.e.
       those that do not have an unlimited, dimension) to the type-dependent  fill-value  associated  with  each
       variable.   This  is  done when nf_enddef() is called.  The fill-value for a variable may be changed from
       the default value by defining the attribute `_FillValue' for the variable.  This attribute must have  the
       same type as the variable and be of length one.

       Variables  with  an unlimited dimension are also prefilled, but on an `as needed' basis.  For example, if
       the first write of such a variable is to position 5, then positions 1 through 4 (and no others) would  be
       set to the fill-value at the same time.

       This default prefilling of data values may be disabled by or'ing the NF_NOFILL flag into the mode parame‐
       ter  of  nf_open() or nf_create(), or, by calling the function nf_set_fill() with the argument NF_NOFILL.
       For variables that do not use the unlimited dimension, this call must be made  before  nf_enddef().   For
       variables that use the unlimited dimension, this call may be made at any time.

       One  can  obtain increased performance of the netCDF interface by using this feature, but only at the ex‐
       pense of requiring the application to set every single data value.  The performance enhancing behavior of
       this function is dependent on the particulars of the implementation and dataset format.  The  flag  value
       controlled by nf_set_fill() is per netCDF ID, not per variable or per write.  Allowing this to change af‐
       fects  the  degree  to which a program can be effectively parallelized.  Given all of this, we state that
       the use of this feature may not be available (or even needed) in future releases.  Programmers  are  cau‐
       tioned against heavy reliance upon this feature.

       integer function nf_setfill(integer ncid, integer fillmode, integer old_fillemode)

              Determines  whether or not variable prefilling will be done (see above).  The netCDF dataset shall
              be writable.  fillmode is either NF_FILL to enable prefilling (the default) or NF_NOFILL  to  dis‐
              able prefilling.  This function returns the previous setting in old_fillmode.

MPP FUNCTION DESCRIPTIONS

       Additional  functions  for  use  on  SGI/Cray MPP machines (_CRAYMPP).  These are used to set and inquire
       which PE is the base for MPP for a particular netCDF. These are only relevant  when  using  the  SGI/Cray
       ``global''  Flexible  File  I/O layer and desire to have only a subset of PEs to open the specific netCDF
       file.  For technical reasons, these functions are available on all platforms.  On a platform  other  than
       SGI/Cray MPP, it is as if only processor available were processor 0.

       To   use  this  feature,  you  need  to  specify  a  communicator  group  and  call  glio_group_mpi()  or
       glio_group_shmem() prior to the netCDF nf_open() and nf_create() calls.

       integer function nf__create_mp(character*(*) path, integer cmode, integer initialsize, integer pe,  inte‐
              ger chunksize, integer ncid)

              Like nf__create() but allows the base PE to be set.

              The  argument  pe  sets  the  base  PE  at creation time. In the MPP environment, nf__create() and
              nf_create() set the base PE to processor zero by default.

       integer function nf__open_mp(character*(*) path, integer mode, integer  pe,  integer  chunksize,  integer
              ncid)

              Like  nf__open()  but  allows the base PE to be set.  The argument pe sets the base PE at creation
              time. In the MPP environment, nf__open() and nf_open() set the base PE to processor  zero  by  de‐
              fault.

       integer function nf_inq_base_pe(integer ncid, integer pe)

              Inquires  of  the  netCDF dataset which PE is being used as the base for MPP use.  This is safe to
              use at any time.

       integer function nf_set_base_pe(integer ncid, integer pe)

              Resets the base PE for the netCDF dataset.  Only perform this operation when the affected communi‐
              cator group synchronizes before and after the call.  This operation is very risky and should  only
              be contemplated under only the most extreme cases.

ENVIRONMENT VARIABLES

       NETCDF_FFIOSPEC
           Specifies the Flexible File I/O buffers for netCDF I/O when executing under the UNICOS operating sys‐
           tem  (the  variable is ignored on other operating systems).  An appropriate specification can greatly
           increase the efficiency of netCDF I/O -- to the extent that it can actually  surpass  FORTRAN  binary
           I/O.   This environment variable has been made a little more generalized, such that other FFIO option
           specifications can now be added.  The default specification is  bufa:336:2,  unless  a  current  FFIO
           specification is in operation, which will be honored.  See UNICOS Flexible File I/O for more informa‐
           tion.

MAILING-LISTS

       Both  a  mailing list and a digest are available for discussion of the netCDF interface and announcements
       about netCDF bugs, fixes, and enhancements.  To begin or change your subscription to either the  mailing-
       list  or  the digest, send one of the following in the body (not the subject line) of an email message to
       "majordomo@unidata.ucar.edu".  Use your email address in place of jdoe@host.inst.domain.

       To subscribe to the netCDF mailing list:
              subscribe netcdfgroup jdoe@host.inst.domain
       To unsubscribe from the netCDF mailing list:
              unsubscribe netcdfgroup jdoe@host.inst.domain
       To subscribe to the netCDF digest:
              subscribe netcdfdigest jdoe@host.inst.domain
       To unsubscribe from the netCDF digest:
              unsubscribe netcdfdigest jdoe@host.inst.domain
       To retrieve the general introductory information for the mailing list:
              info netcdfgroup
       To get a synopsis of other majordomo commands:
              help

SEE ALSO

       ncdump(1), ncgen(1), netcdf(3f).

       netCDF User's Guide, published by the Unidata Program Center, University Corporation for Atmospheric  Re‐
       search, located in Boulder, Colorado.

       NetCDF home page at http:/www.unidata.ucar.edu/netcdf.

Printed: 2025-07-18                                1997-04-18                                          NETCDF(3)