Provided by: python-gmpy2-common_2.1.5-3build1_all bug

NAME

       gmpy2 - gmpy2 Documentation

       Contents:

INTRODUCTION TO GMPY2

       gmpy2  is  a  C-coded  Python  extension module that supports multiple-precision arithmetic. gmpy2 is the
       successor to the original gmpy module. The gmpy module only supported the GMP multiple-precision library.
       gmpy2 adds support for the MPFR (correctly rounded real floating-point  arithmetic)  and  MPC  (correctly
       rounded  complex  floating-point arithmetic) libraries. gmpy2 also updates the API and naming conventions
       to be more consistent and support the additional functionality.

       The following libraries are supported:

       • GMP for integer and rational arithmetic

         Home page: http://gmplib.org

       • MPFR for correctly rounded real floating-point arithmetic

         Home page: http://www.mpfr.org

       • MPC for correctly rounded complex floating-point arithmetic

         Home page: http://mpc.multiprecision.org

       • Generalized Lucas sequences and primality tests are based on the following code:

         mpz_lucas: http://sourceforge.net/projects/mpzlucas/

         mpz_prp: http://sourceforge.net/projects/mpzprp/

   gmpy2 Versions
       gmpy2 2.1.3 is the last planned release that will support Python 2.7 and the  early  Python  3  releases.
       Bugfixes may be released.

       Development will shift to gmpy2 2.2.x

INSTALLATION

       Pre-compiled binary wheels are available on PyPI for Linux, MacOS, and Windows.

OVERVIEW OF GMPY2

   Tutorial
       The  mpz  type  is  compatible with Python's built-in int/long type but is significantly faster for large
       values. The cutover point for performance varies, but can be as low as 20 to  40  digits.  A  variety  of
       additional integer functions are provided.

       Operator overloading is fully supported. Coversion from native Python types is optimized for performance.

          >>> import gmpy2
          >>> from gmpy2 import mpz,mpq,mpfr,mpc
          >>> mpz(99) * 43
          mpz(4257)
          >>> pow(mpz(99), 37, 59)
          mpz(18)
          >>> gmpy2.isqrt(99)
          mpz(9)
          >>> gmpy2.isqrt_rem(99)
          (mpz(9), mpz(18))
          >>> gmpy2.gcd(123,27)
          mpz(3)
          >>> gmpy2.lcm(123,27)
          mpz(1107)
          >>> (mpz(123) + 12) / 5
          mpfr('27.0')
          >>> (mpz(123) + 12) // 5
          mpz(27)
          >>> (mpz(123) + 12) / 5.0
          mpfr('27.0')

       The mpq type is compatible with the fractions.Fraction type included with Python.

          >>> mpq(3,7)/7
          mpq(3,49)
          >>> mpq(45,3) * mpq(11,8)
          mpq(165,8)

       gmpy2  supports  correctly  rounded  arbitrary precision real and complex arithmetic via the MPFR and MPC
       libraries. Floating point contexts are  used  to  control  precision,  rounding  modes,  and  exceptional
       conditions. For example, division by zero can either return an Infinity or raise an exception.

          >>> mpfr(1)/7
          mpfr('0.14285714285714285')
          >>> gmpy2.get_context().precision=200
          >>> mpfr(1)/7
          mpfr('0.1428571428571428571428571428571428571428571428571428571428571',200)
          >>> gmpy2.get_context()
          context(precision=200, real_prec=Default, imag_prec=Default,
                  round=RoundToNearest, real_round=Default, imag_round=Default,
                  emax=1073741823, emin=-1073741823,
                  subnormalize=False,
                  trap_underflow=False, underflow=False,
                  trap_overflow=False, overflow=False,
                  trap_inexact=False, inexact=True,
                  trap_invalid=False, invalid=False,
                  trap_erange=False, erange=False,
                  trap_divzero=False, divzero=False,
                  trap_expbound=False,
                  allow_complex=False)
          >>> mpfr(1)/0
          mpfr('inf')
          >>> gmpy2.get_context().trap_divzero=True
          >>> mpfr(1)/0
          Traceback (most recent call last):
            File "<stdin>", line 1, in <module>
          gmpy2.DivisionByZeroError: 'mpfr' division by zero in division
          >>> gmpy2.get_context()
          context(precision=200, real_prec=Default, imag_prec=Default,
                  round=RoundToNearest, real_round=Default, imag_round=Default,
                  emax=1073741823, emin=-1073741823,
                  subnormalize=False,
                  trap_underflow=False, underflow=False,
                  trap_overflow=False, overflow=False,
                  trap_inexact=False, inexact=True,
                  trap_invalid=False, invalid=False,
                  trap_erange=False, erange=False,
                  trap_divzero=True, divzero=True,
                  trap_expbound=False,
                  allow_complex=False)
          >>> gmpy2.sqrt(mpfr(-2))
          mpfr('nan')
          >>> gmpy2.get_context().allow_complex=True
          >>> gmpy2.get_context().precision=53
          >>> gmpy2.sqrt(mpfr(-2))
          mpc('0.0+1.4142135623730951j')
          >>>
          >>> gmpy2.set_context(gmpy2.context())
          >>> with gmpy2.local_context() as ctx:
          ...   print(gmpy2.const_pi())
          ...   ctx.precision+=20
          ...   print(gmpy2.const_pi())
          ...   ctx.precision+=20
          ...   print(gmpy2.const_pi())
          ...
          3.1415926535897931
          3.1415926535897932384628
          3.1415926535897932384626433831
          >>> print(gmpy2.const_pi())
          3.1415926535897931
          >>>

   Miscellaneous gmpy2 Functions
       from_binary(...)
              from_binary(bytes) returns a gmpy2 object from a byte sequence created by to_binary().

       get_cache(...)
              get_cache()  returns  the  current  cache size (number of objects) and the maximum size per object
              (number of limbs).

              gmpy2 maintains an internal list of freed mpz, xmpz, mpq, mpfr, and mpc  objects  for  reuse.  The
              cache significantly improves performance but also increases the memory footprint.

       license(...)
              license() returns the gmpy2 license information.

       mp_limbsize(...)
              mp_limbsize() returns the number of bits per limb used by the GMP library.

       mp_version(...)
              mp_version() returns the version of the GMP library.

       mpc_version(...)
              mpc_version() returns the version of the MPC library.

       mpfr_version(...)
              mpfr_version() returns the version of the MPFR library.

       random_state(...)
              random_state([seed])  returns  a  new  object  containing  state information for the random number
              generator. An optional integer argument can be specified as the  seed  value.  Only  the  Mersenne
              Twister random number generator is supported.

       set_cache(...)
              set_cache(number,  size)  updates the maximum number of freed objects of each type that are cached
              and the maximum size (in limbs) of each object. The maximum number of objects of  each  type  that
              can  be  cached  is 1000. The maximum size of an object is 16384. The maximum size of an object is
              approximately 64K on 32-bit systems and 128K on 64-bit systems.

              NOTE:
                 The caching options are global to gmpy2. Changes are not thread-safe. A change  in  one  thread
                 will impact all threads.

       to_binary(...)
              to_binary(x) returns a byte sequence from a gmpy2 object. All object types are supported.

       version(...)
              version() returns the version of gmpy2.

MULTIPLE-PRECISION INTEGERS

       The gmpy2 mpz type supports arbitrary precision integers. It should be a drop-in replacement for Python's
       long type. Depending on the platform and the specific operation, an mpz will be faster than Python's long
       once the precision exceeds 20 to 50 digits. All the special integer functions in GMP are supported.

   Examples
          >>> import gmpy2
          >>> from gmpy2 import mpz
          >>> mpz('123') + 1
          mpz(124)
          >>> 10 - mpz(1)
          mpz(9)
          >>> gmpy2.is_prime(17)
          True
          >>> mpz('1_2')
          mpz(12)

       NOTE:
          The  use  of  from  gmpy2  import  *  is not recommended. The names in gmpy2 have been chosen to avoid
          conflict with Python's builtin names but gmpy2 does use names that may conflict with other modules  or
          variable names.

       NOTE:
          gmpy2.mpz() ignores all embedded underscore characters. It does not attempt to be 100% compatible with
          all Python exceptions.

   mpz Methods
       bit_clear(...)
              x.bit_clear(n) returns a copy of x with bit n set to 0.

       bit_count(...)
              x.bit_count() returns the number of 1-bits set in abs(x).

       bit_flip(...)
              x.bit_flip(n) returns a copy of x with bit n inverted.

       bit_length(...)
              x.bit_length()  returns  the  number  of  significant bits in the radix-2 representation of x. For
              compatibility with Python, mpz(0).bit_length() returns 0.

       bit_scan0(...)
              x.bit_scan0(n) returns the index of the first 0-bit of x with index >= n. If  there  are  no  more
              0-bits  in x at or above index n (which can only happen for x < 0, assuming an infinitely long 2's
              complement format), then None is returned. n must be >= 0.

       bit_scan1(...)
              x.bit_scan1(n) returns the index of the first 1-bit of x with index >= n. If  there  are  no  more
              1-bits in x at or above index n (which can only happen for x >= 0, assuming an infinitely long 2's
              complement format), then None is returned. n must be >= 0.

       bit_set(...)
              x.bit_set(n) returns a copy of x with bit n set to 1.

       bit_test(...)
              x.bit_test(n) returns True if bit n of x is set, and False if it is not set.

       conjugtae(...)
              Return the conjugate of x (which is just a new reference to x since x not a complex number).

       denominator(...)
              x.denominator() returns mpz(1).

       digits(...)
              x.digits([base=10]) returns a string representing x in radix base.

       imag   Return the imaginary component of an mpz. Always mpz(0).

       is_congruent(...)
              x.is_congruent(y, m) returns True if x is congruent to y modulo m, else returns False.

       is_divisible(...)
              x.is_divisible(d) returns True if x is divisible by d, else returns False.

       is_even(...)
              x.is_even() returns True if x is even, else returns False.

       is_odd(...)
              x.is_odd() returns True if x is even, else returns False.

       is_power(...)
              x.is_power()  returns  True  if x is a perfect power (there exists integers y and n > 1, such that
              x=y**n), else returns False.

       is_prime(...)
              x.is_prime() returns True if x is _probably_ prime, else False if x is definitely composite.

              See the documentation for gmpy2.is_prime for details on the underlying primality  tests  that  are
              performed.

       is_square(...)
              x.is_square() returns True if x is a perfect square, else returns False.

       num_digits(...)
              x.num_digits([base=10])  returns  the length of the string representing the absolute value of x in
              radix base. The result is correct if base is a power of 2. For other bases, the result is  usually
              correct but may be 1 too large. base can range between 2 and 62, inclusive.

       numerator(...)
              x.numerator() returns a copy of x.

       real(...)
              x.real returns a copy of x.

   mpz Functions
       add(...)
              add(x, y) returns x + y. The result type depends on the input types.

       bincoef(...)
              bincoef(x, n) returns the binomial coefficient. n must be >= 0.

       bit_clear(...)
              bit_clear(x, n) returns a copy of x with bit n set to 0.

       bit_count(...)
              bit_count(x)  returns  a  the  number  of  1  bits in the binary representation of x. Differs from
              popcount() for x <0.

       bit_flip(...)
              bit_flip(x, n) returns a copy of x with bit n inverted.

       bit_length(...)
              bit_length(x) returns the number of significant bits in  the  radix-2  representation  of  x.  For
              compatibility with Python, mpz(0).bit_length() returns 0 while mpz(0).num_digits(2) returns 1.

       bit_mask(...)
              bit_mask(n) returns an mpz object exactly n bits in length with all bits set.

       bit_scan0(...)
              bit_scan0(x,  n)  returns  the index of the first 0-bit of x with index >= n. If there are no more
              0-bits in x at or above index n (which can only happen for x < 0, assuming an infinitely long  2's
              complement format), then None is returned. n must be >= 0.

       bit_scan1(...)
              bit_scan1(x,  n)  returns  the index of the first 1-bit of x with index >= n. If there are no more
              1-bits in x at or above index n (which can only happen for x >= 0, assuming an infinitely long 2's
              complement format), then None is returned. n must be >= 0.

       bit_set(...)
              bit_set(x, n) returns a copy of x with bit n set to 1.

       bit_test(...)
              bit_test(x, n) returns True if bit n of x is set, and False if it is not set.

       c_div(...)
              c_div(x, y) returns the quotient of x divided by y. The quotient is rounded towards +Inf  (ceiling
              rounding). x and y must be integers.

       c_div_2exp(...)
              c_div_2exp(x,  n)  returns the quotient of x divided by 2**n. The quotient is rounded towards +Inf
              (ceiling rounding). x must be an integer and n must be > 0.

       c_divmod(...)
              c_divmod(x, y) returns the quotient and remainder of x divided  by  y.  The  quotient  is  rounded
              towards  +Inf  (ceiling rounding) and the remainder will have the opposite sign of y. x and y must
              be integers.

       c_divmod_2exp(...)
              c_divmod_2exp(x ,n) returns the quotient and remainder of x  divided  by  2**n.  The  quotient  is
              rounded  towards  +Inf (ceiling rounding) and the remainder will be negative or zero. x must be an
              integer and n must be > 0.

       c_mod(...)
              c_mod(x, y) returns the remainder of x divided by y. The remainder will have the opposite sign  of
              y. x and y must be integers.

       c_mod_2exp(...)
              c_mod_2exp(x,  n)  returns  the  remainder of x divided by 2**n. The remainder will be negative. x
              must be an integer and n must be > 0.

       comb(...)
              comb(x, n) returns the number of combinations of x things, taking n at a time. n must be >= 0.

       digits(...)
              digits(x[, base=10]) returns a string representing x in radix base.

       div(...)
              div(x, y) returns x / y. The result type depends on the input types.

       divexact(...)
              divexact(x, y) returns the quotient of x divided by y. Faster than standard division but  requires
              the remainder is zero!

       divm(...)
              divm(a,  b, m) returns x such that b * x == a modulo m. Raises a ZeroDivisionError exception if no
              such value x exists.

       double_fac(...)
              double_fac(n) returns the exact double factorial of n.

       f_div(...)
              f_div(x, y) returns the quotient of x divided by y. The quotient is rounded  towards  -Inf  (floor
              rounding). x and y must be integers.

       f_div_2exp(...)
              f_div_2exp(x,  n)  returns the quotient of x divided by 2**n. The quotient is rounded towards -Inf
              (floor rounding). x must be an integer and n must be > 0.

       f_divmod(...)
              f_divmod(x, y) returns the quotient and remainder of x divided  by  y.  The  quotient  is  rounded
              towards  -Inf  (floor  rounding)  and  the remainder will have the same sign as y. x and y must be
              integers.

       f_divmod_2exp(...)
              f_divmod_2exp(x, n) returns quotient and remainder after dividing  x  by  2**n.  The  quotient  is
              rounded towards -Inf (floor rounding) and the remainder will be positive. x must be an integer and
              n must be > 0.

       f_mod(...)
              f_mod(x, y) returns the remainder of x divided by y. The remainder will have the same sign as y. x
              and y must be integers.

       f_mod_2exp(...)
              f_mod_2exp(x, n) returns remainder of x divided by 2**n. The remainder will be positive. x must be
              an integer and n must be > 0.

       fac(...)
              fac(n) returns the exact factorial of n. Use factorial() to get the floating-point approximation.

       fib(...)
              fib(n) returns the n-th Fibonacci number.

       fib2(...)
              fib2(n) returns a 2-tuple with the (n-1)-th and n-th Fibonacci numbers.

       gcd(...)
              gcd(...) returns the greatest common multiple of a sequence of integers.

       gcdext(...)
              gcdext(a, b) returns a 3-element tuple (g, s, t) such that

              g == gcd(a, b) and g == a * s  + b * t

       hamdist(...)
              hamdist(x, y) returns the Hamming distance (number of bit-positions where the bits differ) between
              integers x and y.

       invert(...)
              invert(x, m) returns y such that x * y == 1 modulo m, or 0 if no such y exists.

       iroot(...)
              iroot(x,n)  returns  a  2-element  tuple (y, b) such that y is the integer n-th root of x and b is
              True if the root is exact. x must be >= 0 and n must be > 0.

       iroot_rem(...)
              iroot_rem(x,n) returns a 2-element tuple (y, r) such that y is the integer n-th root of x and x  =
              y**n + r. x must be >= 0 and n must be > 0.

       is_bpsw_prp(...)
              is_bpsw_prp(n)  returns True if n is a Baillie-Pomerance-Selfridge-Wagstaff probable prime. A BPSW
              probable prime passes both the is_strong_prp() test with base 2 and the is_selfridge_prp() test.

       is_congruent(...)
              is_congurent(x, y, m) returns True if x is congruent to y modulo m, else return False.

       is_divisible(...)
              is_divisible(x, d) returns True if x is divisible by d, else return False.

       is_euler_prp(...)
              is_euler_prp(n, a) returns True if n is an Euler probable prime to the base a.

              Assuming:
                     gcd(n, a) == 1 n is odd

              then "n* is an Euler prp if:
                     a**((n-1)/2) == 1 (mod n)

       is_even(...)
              is_even(x) returns True if x is even, False otherwise.

       is_extra_strong_lucas_prp(...)
              is_extra_strong_lucas_prp(n, p) returns True if n is an extra strong  Lucas  probable  prime  with
              parameters (p, 1).

              Assuming:
                     n is odd D = p*p - 4 D != 0 gcd(n, 2*D) == 1 n = s*(2**r) + Jacobi(D,n), s odd

              then n is an extra strong Lucas probable prime if:
                     lucasu(p,1,s)  ==  0  (mod n) or lucasv(p,1,s) == +/-2 (mod n) or lucasv(p,1,s*(2**t)) == 0
                     (mod n) for some t, 0 <= t < r

       is_fermat_prp(...)
              is_fermat_prp(n ,a) returns True if n is a Fermat probable prime to the base a.

              Assuming:
                     gcd(n,a) == 1

              then n is a Fermat probable prime if:
                     a**(n-1) == 1 (mod n)

       is_fibonacci_prp(...)
              is_fibonacci_prp(n,p,q) returns True if n is a Fibonacci probable prime with parameters (p,q).

              Assuming:
                     n is odd p > 0 q = +/-1 p*p - 4*q != 0

              then n is a Fibonacci probable prime if:
                     lucasv(p,q,n) == p (mod n).

       is_lucas_prp(...)
              is_lucas_prp(n,p,q) returns True if n is a Lucas probable prime with parameters (p,q).

              Assuming:
                     n is odd D = p*p - 4*q, D != 0 gcd(n, 2*q*D) == 1

              then n is a Lucas probable prime if:
                     lucasu(p,q,n - Jacobi(D,n)) == 0 (mod n)

       is_odd(...)
              is_odd(x) returns True if x is odd, False otherwise.

       is_power(...)
              is_power(x) returns True if x is a perfect power, False otherwise.

       is_prime(...)
              is_prime(x[, n=25]) returns True if x is probably prime. False is  returned  if  x  is  definitely
              composite.  x  is  checked  for  small  divisors and up to n Miller-Rabin tests are performed. The
              actual tests performed may vary based on version of GMP used.

       is_selfridge_prp(...)
              is_selfridge_prp(n) returns True if n is a Lucas probable prime with  Selfidge  parameters  (p,q).
              The Selfridge parameters are chosen by finding the first element D in the sequence {5, -7, 9, -11,
              13,  ...}  such  that Jacobi(D,n) == -1. Then let p=1 and q=(1-D)/4 and perform the Lucas probable
              prime test.

       is_square(...)
              is_square(x) returns True if x is a perfect square, False otherwise.

       is_strong_bpsw_prp(...)
              is_strong_bpsw_prp(n) returns True if n is a strong Baillie-Pomerance- Selfridge-Wagstaff probable
              prime. A strong BPSW  probable  prime  passes  the  is_strong_prp()  test  with  base  2  and  the
              is_strong_selfridge_prp() test.

       is_strong_lucas_prp(...)
              is_strong_lucas_prp(n,p,q)  returns  True  if  n  is a strong Lucas probable prime with parameters
              (p,q).

              Assuming:
                     n is odd D = p*p - 4*q, D != 0 gcd(n, 2*q*D) == 1 n = s*(2**r) + Jacobi(D,n), s odd

              then n is a strong Lucas probable prime if:
                     lucasu(p,q,s) == 0 (mod n) or lucasv(p,q,s*(2**t)) == 0 (mod n) for some t, 0 <= t < r

       is_strong_prp(...)
              is_strong_prp(n,a) returns True if n is a strong (also known as Miller-Rabin)  probable  prime  to
              the base a.

              Assuming:
                     gcd(n,a) == 1 n is odd n = s*(2**r) + 1, with s odd

              then n is a strong probable prime if:
                     a**s == 1 (mod n) or a**(s*(2**t)) == -1 (mod n) for some t, 0 <= t < r.

       is_strong_selfridge_prp(...)
              is_strong_selfridge_prp(n)  returns  True  if  n  is  a  strong Lucas probable prime with Selfidge
              parameters (p,q). The Selfridge parameters are chosen by  finding  the  first  element  D  in  the
              sequence  {5,  -7,  9, -11, 13, ...} such that Jacobi(D,n) == -1. Then let p=1 and q = (1-D)/4 and
              perform a strong Lucas probable prime test.

       isqrt(...)
              isqrt(x) returns the integer square root of an integer x. x must be >= 0.

       isqrt_rem(...)
              isqrt_rem(x) returns a 2-tuple (s, t) such that s = isqrt(x) and t = x - s * s. x must be >= 0.

       jacobi(...)
              jacobi(x, y) returns the Jacobi symbol (x | y). y must be odd and > 0.

       kronecker(...)
              kronecker(x, y) returns the Kronecker-Jacobi symbol (x | y).

       lcm(...)
              lcm(...) returns the lowest common multiple of a sequence of integers.

       legendre(...)
              legendre(x, y) returns the Legendre symbol (x | y). y is assumed to be an odd prime.

       lucas(...)
              lucas(n) returns the n-th Lucas number.

       lucas2(...)
              lucas2(n) returns a 2-tuple with the (n-1)-th and n-th Lucas numbers.

       lucasu(...)
              lucasu(p,q,k) returns the k-th element of the Lucas U sequence defined by (p,q). p*p  -  4*q  must
              not equal 0; k must be greater than or equal to 0.

       lucasu_mod(...)
              lucasu_mod(p,q,k,n)  returns  the  k-th element of the Lucas U sequence defined by (p,q) modulo n.
              p*p - 4*q must not equal 0; k must be greater than or equal to 0; n must be greater than 0.

       lucasv(...)
              lucasv(p,q,k) returns the k-th element of the Lucas V sequence defined by (p,q). p*p  -  4*q  must
              not equal 0; k must be greater than or equal to 0.

       lucasv_mod(...)
              lucasv_mod(p,q,k,n)  returns  the  k-th element of the Lucas V sequence defined by (p,q) modulo n.
              p*p - 4*q must not equal 0; k must be greater than or equal to 0; n must be greater than 0.

       mpz(...)
              mpz() returns a new mpz object set to 0.

              mpz(n) returns a new mpz object from a numeric value n. If  n  is  not  an  integer,  it  will  be
              truncated to an integer.

              mpz(s[,  base=0])  returns  a  new mpz object from a string s made of digits in the given base. If
              base = 0, then binary, octal, or hex Python strings are  recognized  by  leading  0b,  0o,  or  0x
              characters. Otherwise the string is assumed to be decimal. Values for base can range between 2 and
              62.

       mpz_random(...)
              mpz_random(random_state,  n) returns a uniformly distributed random integer between 0 and n-1. The
              parameter random_state must be created by random_state() first.

       mpz_rrandomb(...)
              mpz_rrandomb(random_state, b) returns a random integer between 0 and 2**b - 1 with long  sequences
              of  zeros  and  one  in  its binary representation.  The parameter random_state must be created by
              random_state() first.

       mpz_urandomb(...)
              mpz_urandomb(random_state, b) returns a uniformly distributed random integer between 0 and 2**b  -
              1. The parameter random_state must be created by random_state() first.

       mul(...)
              mul(x, y) returns x * y. The result type depends on the input types.

       multi_fac(...)
              multi_fac(n, m) returns the m-multi-factorial of n i.e n!^m.

       next_prime(...)
              next_prime(x) returns the next probable prime number > x.

       num_digits(...)
              num_digits(x[,  base=10]) returns the length of the string representing the absolute value of x in
              radix base. The result is correct if base is a power of 2. For other bases, the result is  usually
              correct but may be 1 too large. base can range between 2 and 62, inclusive.

       popcount(...)
              popcount(x)  returns the number of bits with value 1 in x. If x < 0, the number of bits with value
              1 is infinite so -1 is returned in that case.

       powmod(...)
              powmod(x, y, m) returns (x ** y) mod m. The exponent y can be negative,  and  the  correct  result
              will be returned if the inverse of x mod m exists. Otherwise, a ValueError is raised.

       powmod_exp_list(...)
              powmod_exp_list(base, exp_lst, mod) returns list(powmod(base, i, mod) for i in exp_lst).  Releases
              the GIL so can be easily run in multiple threads.

              Experimental in gmpy2 2.1.x. The capability will continue to exist in future versions but the name
              may change.

       powmod_base_list(...)
              powmod_base_list(base_list,  exp,  mod)  returns list(powmod(i, exp, mod) for i in lst).  Releases
              the GIL so can be easily run in multiple threads.

              Experimental in gmpy2 2.1.x. The capability will continue to exist in future versions but the name
              may change.

       powmod_sec(...)
              powmod_sec(x, y, m) returns (x ** y) mod m. The calculation uses  a  constant  time  algorithm  to
              reduce the risk of side channel attacks. y must be an integer >0. m must be an odd integer.

       primorial(...)
              primorial(n)  returns  the exact primorial of n, i.e. the product of all positive prime numbers <=
              n.

       remove(...)
              remove(x, f) will remove the factor f from x as many times as possible and return a 2-tuple (y, m)
              where y = x // (f ** m). f does not divide y. m is the multiplicity of the factor f in x.  f  must
              be > 1.

       sub(...)
              sub(x, y) returns x - y. The result type depends on the input types.

       t_div(...)
              t_div(x,  y)  returns  the  quotient  of  x  divided  by  y.  The quotient is rounded towards zero
              (truncation). x and y must be integers.

       t_div_2exp(...)
              t_div_2exp(x, n) returns the quotient of x divided by 2**n. The quotient is rounded  towards  zero
              (truncation). n must be > 0.

       t_divmod(...)
              t_divmod(x,  y)  returns  the  quotient  and  remainder of x divided by y. The quotient is rounded
              towards zero (truncation) and the remainder will have the  same  sign  as  x.  x  and  y  must  be
              integers.

       t_divmod_2exp(...)
              t_divmod_2exp(x,  n)  returns  the  quotient  and  remainder of x divided by 2**n. The quotient is
              rounded towards zero (truncation) and the remainder will have the same sign as x.  x  must  be  an
              integer and n must be > 0.

       t_mod(...)
              t_mod(x, y) returns the remainder of x divided by y. The remainder will have the same sign as x. x
              and y must be integers.

       t_mod_2exp(...)
              t_mod_2exp(x, n) returns the remainder of x divided by 2**n. The remainder will have the same sign
              as x. x must be an integer and n must be > 0.

MULTIPLE-PRECISION INTEGERS (ADVANCED TOPICS)

   The xmpz type
       gmpy2  provides  access  to  an experimental integer type called xmpz. The xmpz type is a mutable integer
       type. In-place operations (+=, //=, etc.)  modify the original object and do not  create  a  new  object.
       Instances of xmpz cannot be used as dictionary keys.

          >>> import gmpy2
          >>> from gmpy2 import xmpz
          >>> a = xmpz(123)
          >>> b = a
          >>> a += 1
          >>> a
          xmpz(124)
          >>> b
          xmpz(124)

       The ability to change an xmpz object in-place allows for efficient and rapid bit manipulation.

       Individual bits can be set or cleared:

          >>> a[10]=1
          >>> a
          xmpz(1148)

       Slice notation is supported. The bits referenced by a slice can be either 'read from' or 'written to'. To
       clear a slice of bits, use a source value of 0. In 2s-complement format, 0 is represented by an arbitrary
       number  of  0-bits.  To  set  a  slice  of bits, use a source value of ~0. The tilde operator inverts, or
       complements the bits in an integer. (~0 is -1 so you can also use -1.) In  2s-complement  format,  -1  is
       represented by an arbitrary number of 1-bits.

       If a value for stop is specified in a slice assignment and the actual bit-length of the xmpz is less than
       stop, then the destination xmpz is logically padded with 0-bits to length stop.

          >>> a=xmpz(0)
          >>> a[8:16] = ~0
          >>> bin(a)
          '0b1111111100000000'
          >>> a[4:12] = ~a[4:12]
          >>> bin(a)
          '0b1111000011110000'

       Bits can be reversed:

          >>> bin(a)
          '0b10001111100'
          >>> a[::] = a[::-1]
          >>> bin(a)
          '0b111110001'

       The  iter_bits() method returns a generator that returns True or False for each bit position. The methods
       iter_clear(), and iter_set() return generators that return the bit positions that are 1 or 0. The methods
       support arguments start and stop that define the beginning and ending bit positions  that  are  used.  To
       mimic  the  behavior  of slices. the bit positions checked include start but the last position checked is
       stop - 1.

          >>> a=xmpz(117)
          >>> bin(a)
          '0b1110101'
          >>> list(a.iter_bits())
          [True, False, True, False, True, True, True]
          >>> list(a.iter_clear())
          [1, 3]
          >>> list(a.iter_set())
          [0, 2, 4, 5, 6]
          >>> list(a.iter_bits(stop=12))
          [True, False, True, False, True, True, True, False, False, False, False, False]

       The following program uses the Sieve of Eratosthenes to generate a list of prime numbers.

          from __future__ import print_function
          import time
          import gmpy2

          def sieve(limit=1000000):
              '''Returns a generator that yields the prime numbers up to limit.'''

              # Increment by 1 to account for the fact that slices  do not include
              # the last index value but we do want to include the last value for
              # calculating a list of primes.
              sieve_limit = gmpy2.isqrt(limit) + 1
              limit += 1

              # Mark bit positions 0 and 1 as not prime.
              bitmap = gmpy2.xmpz(3)

              # Process 2 separately. This allows us to use p+p for the step size
              # when sieving the remaining primes.
              bitmap[4 : limit : 2] = -1

              # Sieve the remaining primes.
              for p in bitmap.iter_clear(3, sieve_limit):
                  bitmap[p*p : limit : p+p] = -1

              return bitmap.iter_clear(2, limit)

          if __name__ == "__main__":
              start = time.time()
              result = list(sieve())
              print(time.time() - start)
              print(len(result))

   Advanced Number Theory Functions
       The following functions are based on mpz_lucas.c and mpz_prp.c by David Cleaver.

       A good reference for probable prime testing is http://www.pseudoprime.com/pseudo.html

       is_bpsw_prp(...)
              is_bpsw_prp(n) will return True if n is a Baillie-Pomerance-Selfridge-Wagstaff probable  prime.  A
              BPSW probable prime passes the is_strong_prp() test with base 2 and the is_selfridge_prp() test.

       is_euler_prp(...)
              is_euler_prp(n,a)  will  return  True  if  n is an Euler (also known as Solovay-Strassen) probable
              prime to the base a.
              Assuming:
                gcd(n, a) == 1
                n is odd

              Then an Euler probable prime requires:
                a**((n-1)/2) == 1 (mod n)

       is_extra_strong_lucas_prp(...)
              is_extra_strong_lucas_prp(n,p) will return True if n is an extra strong Lucas probable prime  with
              parameters (p,1).
              Assuming:
                n is odd
                D = p*p - 4, D != 0
                gcd(n, 2*D) == 1
                n = s*(2**r) + Jacobi(D,n), s odd

              Then an extra strong Lucas probable prime requires:
                lucasu(p,1,s) == 0 (mod n)
                  or
                lucasv(p,1,s) == +/-2 (mod n)
                  or
                lucasv(p,1,s*(2**t)) == 0 (mod n) for some t, 0 <= t < r

       is_fermat_prp(...)
              is_fermat_prp(n,a) will return True if n is a Fermat probable prime to the base a.
              Assuming:
                gcd(n,a) == 1

              Then a Fermat probable prime requires:
                a**(n-1) == 1 (mod n)

       is_fibonacci_prp(...)
              is_fibonacci_prp(n,p,q) will return True if n is a Fibonacci probable prime with parameters (p,q).
              Assuming:
                n is odd
                p > 0, q = +/-1
                p*p - 4*q != 0

              Then a Fibonacci probable prime requires:
                lucasv(p,q,n) == p (mod n).

       is_lucas_prp(...)
              is_lucas_prp(n,p,q) will return True if n is a Lucas probable prime with parameters (p,q).
              Assuming:
                n is odd
                D = p*p - 4*q, D != 0
                gcd(n, 2*q*D) == 1

              Then a Lucas probable prime requires:
                lucasu(p,q,n - Jacobi(D,n)) == 0 (mod n)

       is_selfridge_prp(...)
              is_selfridge_prp(n)  will  return  True  if  n  is a Lucas probable prime with Selfidge parameters
              (p,q). The Selfridge parameters are chosen by finding the first element D in the sequence {5,  -7,
              9,  -11,  13,  ...}  such that Jacobi(D,n) == -1. Let p=1 and q = (1-D)/4 and then perform a Lucas
              probable prime test.

       is_strong_bpsw_prp(...)
              is_strong_bpsw_prp(n) will return True  if  n  is  a  strong  Baillie-Pomerance-Selfridge-Wagstaff
              probable  prime.  A strong BPSW probable prime passes the is_strong_prp() test with base 2 and the
              is_strongselfridge_prp() test.

       is_strong_lucas_prp(...)
              is_strong_lucas_prp(n,p,q) will return True if n is a strong Lucas probable prime with  parameters
              (p,q).
              Assuming:
                n is odd
                D = p*p - 4*q, D != 0
                gcd(n, 2*q*D) == 1
                n = s*(2**r) + Jacobi(D,n), s odd

              Then a strong Lucas probable prime requires:
                lucasu(p,q,s) == 0 (mod n)
                  or
                lucasv(p,q,s*(2**t)) == 0 (mod n) for some t, 0 <= t < r

       is_strong_prp(...)
              is_strong_prp(n,a)  will  return True if n is a strong (also known as Miller-Rabin) probable prime
              to the base a.
              Assuming:
                gcd(n,a) == 1
                n is odd
                n = s*(2**r) + 1, with s odd

              Then a strong probable prime requires one of the following is true:
                a**s == 1 (mod n)
                  or
                a**(s*(2**t)) == -1 (mod n) for some t, 0 <= t < r.

       is_strong_selfridge_prp(...)
              is_strong_selfridge_prp(n) will return True if n is a strong Lucas probable  prime  with  Selfidge
              parameters  (p,q).  The  Selfridge  parameters  are  chosen  by finding the first element D in the
              sequence {5, -7, 9, -11, 13, ...} such that Jacobi(D,n) == -1. Let p=1 and q =  (1-D)/4  and  then
              perform a strong Lucas probable prime test.

       lucasu(...)
              lucasu(p,q,k)  will return the k-th element of the Lucas U sequence defined by p,q. p*p - 4*q must
              not equal 0; k must be greater than or equal to 0.

       lucasu_mod(...)
              lucasu_mod(p,q,k,n) will return the k-th element of the Lucas U sequence defined by p,q  (mod  n).
              p*p - 4*q must not equal 0; k must be greater than or equal to 0; n must be greater than 0.

       lucasv(...)
              lucasv(p,q,k)  will  return  the k-th element of the Lucas V sequence defined by parameters (p,q).
              p*p - 4*q must not equal 0; k must be greater than or equal to 0.

       lucasv_mod(...)
              lucasv_mod(p,q,k,n) will return the k-th element of the Lucas V  sequence  defined  by  parameters
              (p,q) (mod n). p*p - 4*q must not equal 0; k must be greater than or equal to 0; n must be greater
              than 0.

MULTIPLE-PRECISION RATIONALS

       gmpy2  provides  a  rational  type  call  mpq. It should be a replacement for Python's fractions.Fraction
       module.

          >>> import gmpy2
          >>> from gmpy2 import mpq
          >>> mpq(1,7)
          mpq(1,7)
          >>> mpq(1,7) * 11
          mpq(11,7)
          >>> mpq(11,7)/13
          mpq(11,91)

   mpq Methods
       digits(...)
              x.digits([base=10]) returns a Python string representing x in the given base (2 to 62, default  is
              10). A leading '-' is present if x < 0, but no leading '+' is present if x >= 0.

   mpq Attributes
       denominator
              x.denominator returns the denominator of x.

       numerator
              x.numerator returns the numerator of x.

   mpq Functions
       add(...)
              add(x, y) returns x + y. The result type depends on the input types.

       div(...)
              div(x, y) returns x / y. The result type depends on the input types.

       f2q(...)
              f2q(x[,  err])  returns  the best mpq approximating x to within relative error err. Default is the
              precision of x. If x is not an mpfr, it is converted to an mpfr. Uses Stern-Brocot  tree  to  find
              the  best approximation. An mpz is returned if the denominator is 1. If err < 0, then the relative
              error sought is 2.0 ** err.

       mpq(...)
              mpq() returns an mpq object set to 0/1.

              mpq(n) returns an mpq object with a numeric value n. Decimal and  Fraction  values  are  converted
              exactly.

              mpq(n, m) returns an mpq object with a numeric value n / m.

              mpq(s[, base=10]) returns an mpq object from a string s made up of digits in the given base. s may
              be  made  up  of two numbers in the same base separated by a '/' character. If base == 10, then an
              embedded '.' indicates a number with a decimal fractional part.

       mul(...)
              mul(x, y) returns x * y. The result type depends on the input types.

       qdiv(...)
              qdiv(x[, y=1]) returns x/y as mpz if possible, or as mpq if x is not exactly divisible by y.

       sub(...)
              sub(x, y) returns x - y. The result type depends on the input types.

MULTIPLE-PRECISION REALS

       The mpfr type is based on the MPFR library. The new  mpfr  type  supports  correct  rounding,  selectable
       rounding  modes, and many trigonometric, exponential, and special functions. A context manager is used to
       control precision, rounding modes, and the behavior of exceptions.

       The default precision of an mpfr is 53 bits - the same precision as Python's float type. If the precision
       is changed, then mpfr(float('1.2')) differs from mpfr('1.2'). To take advantage of the  higher  precision
       provided by the mpfr type, always pass constants as strings.

          >>> import gmpy2
          >>> from gmpy2 import mpfr
          >>> mpfr('1.2')
          mpfr('1.2')
          >>> mpfr(float('1.2'))
          mpfr('1.2')
          >>> gmpy2.get_context().precision=100
          >>> mpfr('1.2')
          mpfr('1.2000000000000000000000000000006',100)
          >>> mpfr(float('1.2'))
          mpfr('1.1999999999999999555910790149937',100)
          >>>

   Contexts
       A  context  is  used  to control the behavior of mpfr and mpc arithmetic.  In addition to controlling the
       precision, the rounding mode can be specified, minimum  and  maximum  exponent  values  can  be  changed,
       various  exceptions  can  be  raised  or ignored, gradual underflow can be enabled, and returning complex
       results can be enabled.

       gmpy2.context() creates a new context with all options set to default.  gmpy2.set_context(ctx)  will  set
       the  active context to ctx.  gmpy2.get_context() will return a reference to the active context. Note that
       contexts are mutable: modifying the reference returned by get_context() will modify  the  active  context
       until  a  new context is enabled with set_context(). The copy() method of a context will return a copy of
       the context.

       The following example just modifies the precision. The remaining options will be discussed later.

          >>> gmpy2.set_context(gmpy2.context())
          >>> gmpy2.get_context()
          context(precision=53, real_prec=Default, imag_prec=Default,
                  round=RoundToNearest, real_round=Default, imag_round=Default,
                  emax=1073741823, emin=-1073741823,
                  subnormalize=False,
                  trap_underflow=False, underflow=False,
                  trap_overflow=False, overflow=False,
                  trap_inexact=False, inexact=False,
                  trap_invalid=False, invalid=False,
                  trap_erange=False, erange=False,
                  trap_divzero=False, divzero=False,
                  trap_expbound=False,
                  allow_complex=False,
                  allow_release_gil=False)
          >>> gmpy2.sqrt(5)
          mpfr('2.2360679774997898')
          >>> gmpy2.get_context().precision=100
          >>> gmpy2.sqrt(5)
          mpfr('2.2360679774997896964091736687316',100)
          >>> gmpy2.get_context().precision+=20
          >>> gmpy2.sqrt(5)
          mpfr('2.2360679774997896964091736687312762351',120)
          >>> ctx=gmpy2.get_context()
          >>> ctx.precision+=20
          >>> gmpy2.sqrt(5)
          mpfr('2.2360679774997896964091736687312762354406182',140)
          >>> gmpy2.set_context(gmpy2.context())
          >>> gmpy2.sqrt(5)
          mpfr('2.2360679774997898')
          >>> ctx.precision+=20
          >>> gmpy2.sqrt(5)
          mpfr('2.2360679774997898')
          >>> gmpy2.set_context(ctx)
          >>> gmpy2.sqrt(5)
          mpfr('2.2360679774997896964091736687312762354406183596116',160)
          >>>

   Context Attributes
       precision
              This attribute controls the precision of an mpfr result. The precision is specified in  bits,  not
              decimal  digits.  The  maximum  precision  that  can be specified is platform dependent and can be
              retrieved with get_max_precision().

       NOTE:
          Specifying a value for precision that is too close to  the  maximum  precision  will  cause  the  MPFR
          library to fail.

       real_prec
              This attribute controls the precision of the real part of an mpc result.  If the value is Default,
              then the value of the precision attribute is used.

       imag_prec
              This  attribute  controls  the  precision  of the imaginary part of an mpc result. If the value is
              Default, then the value of real_prec is used.

       round  There are five rounding modes available to mpfr types:

              RoundAwayZero
                     The result is rounded away from 0.0.

              RoundDown
                     The result is rounded towards -Infinity.

              RoundToNearest
                     Round to the nearest value; ties are rounded to an even value.

              RoundToZero
                     The result is rounded towards 0.0.

              RoundUp
                     The result is rounded towards +Infinity.

       real_round
              This attribute controls the rounding mode for the real part of an mpc  result.  If  the  value  is
              Default,  then  the  value  of  the  round  attribute  is used. Note: RoundAwayZero is not a valid
              rounding mode for mpc.

       imag_round
              This attribute controls the rounding mode for the imaginary part of an mpc result. If the value is
              Default, then the value of the real_round attribute is used. Note: RoundAwayZero is  not  a  valid
              rounding mode for mpc.

       emax   This  attribute  controls the maximum allowed exponent of an mpfr result.  The maximum exponent is
              platform dependent and can be retrieved with get_emax_max().

       emin   This attribute controls the minimum allowed exponent of an mpfr result.  The minimum  exponent  is
              platform dependent and can be retrieved with get_emin_min().

       subnormalize
              The  usual  IEEE-754  floating  point  representation  supports gradual underflow when the minimum
              exponent is reached. The MFPR library does not enable gradual underflow by default but it  can  be
              enabled to precisely mimic the results of IEEE-754 floating point operations.

       trap_underflow
              If  set  to  False,  a  result  that  is smaller than the smallest possible mpfr given the current
              exponent range will be replaced by +/-0.0. If set to True, an  UnderflowResultError  exception  is
              raised.

       underflow
              This  flag is not user controllable. It is automatically set if a result underflowed to +/-0.0 and
              trap_underflow is False.

       trap_overflow
              If set to False, a result that is larger than the largest possible mpfr given the current exponent
              range will be replaced by +/-Infinity. If set to True, an OverflowResultError exception is raised.

       overflow
              This flag is not user controllable. It is automatically set if a result overflowed to  +/-Infinity
              and trap_overflow is False.

       trap_inexact
              This  attribute  controls  whether  or not an InexactResultError exception is raised if an inexact
              result is returned. To check if the result is greater or less than the exact result, check the  rc
              attribute of the mpfr result.

       inexact
              This flag is not user controllable. It is automatically set if an inexact result is returned.

       trap_invalid
              This attribute controls whether or not an InvalidOperationError exception is raised if a numerical
              result  is not defined. A special NaN (Not-A-Number) value will be returned if an exception is not
              raised.  The InvalidOperationError is a sub-class of Python's ValueError.

              For example, gmpy2.sqrt(-2) will normally return mpfr('nan').  However, if allow_complex is set to
              True, then an mpc result will be returned.

       invalid
              This flag is not user controllable. It is automatically set if an invalid (Not-A-Number) result is
              returned.

       trap_erange
              This attribute controls whether or not a RangeError exception is raised  when  certain  operations
              are  performed on NaN and/or Infinity values.  Setting trap_erange to True can be used to raise an
              exception if comparisons are attempted with a NaN.

                 >>> gmpy2.set_context(gmpy2.context())
                 >>> mpfr('nan') == mpfr('nan')
                 False
                 >>> gmpy2.get_context().trap_erange=True
                 >>> mpfr('nan') == mpfr('nan')
                 Traceback (most recent call last):
                   File "<stdin>", line 1, in <module>
                 gmpy2.RangeError: comparison with NaN
                 >>>

       erange This flag is not user controllable. It is automatically set if an erange error occurred.

       trap_divzero
              This attribute controls whether or not a DivisionByZeroError exception is raised if division by  0
              occurs. The DivisionByZeroError is a sub-class of Python's ZeroDivisionError.

       divzero
              This flag is not user controllable. It is automatically set if a division by zero occurred and NaN
              result was returned.

       allow_complex
              This  attribute  controls  whether  or  not  an mpc result can be returned if an mpfr result would
              normally not be possible.

       rational_division
              If set to True, mpz / mpz will return an mpq instead of an mpfr.

       allow_release_gil
              If set to True, many mpz and mpq computations will release the GIL.

              This is considered an experimental feature.

   Context Methods
       abs

       acos

       acosh

       add

       agm

       ai

       asin

       asinh

       atan

       atan2

       atanh

       cbrt

       ceil

       check_range

       clear_flags()
              Clear the underflow, overflow, inexact, invalid, erange, and divzero flags.

       const_catalan

       const_euler

       const_log

       const_pi

       copy() Return a copy of the context.

       cos

       cosh

       cot

       coth

       csc

       degrees

       digamma

       div

       div_2exp

       divmod

       eint

       erf

       erfc

       exp

       exp10

       exp2

       expm1

       factorial

       floor

       floor_div

       fma

       fmma

       fmms

       fmod

       fms

       frac

       frexp

       fsum

       gamma

       hypot

       is_finite

       is_infinite

       is_integer

       is_nan

       is _regular

       is_signed

       is_zero

       j0

       j1

       jn

       lgamma

       li2

       lngamma

       log

       log10

       log1p

       log2

       maxnum

       minnum

       minus

       mod

       modf

       mul

       mul_2exp

       next_above

       next_below

       next_toward

       norm

       phase

       plus

       polar

       pow

       proj

       radians

       rec_sqrt

       rect

       reldiff

       remainder

       remquo

       rint

       rint_ceil

       rint_floor

       rint_round

       rint_trunc

       root

       root_of_unity

       rootn

       round

       round2

       round_away

       sec

       sech

       sin

       sin_cos

       sinh

       sinh_cosh

       sqrt

       square

       sub

       subnormalize

       tan

       tanh

       trunc

       y0

       y1

       yn

       zeta

   Contexts and the with statement
       Contexts can also be used in conjunction with Python's with  ...  statement  to  temporarily  change  the
       context settings for a block of code and then restore the original settings when the block of code exits.

       gmpy2.local_context()  first  save  the current context and then creates a new context based on a context
       passed as the first argument, or the current context if no context is passed. The new context is modified
       if any optional keyword arguments are given. The original active  context  is  restored  when  the  block
       completes.

       In the following example, the current context is saved by gmpy2.local_context() and then the block begins
       with a copy of the default context and the precision set to 100. When the block is finished, the original
       context is restored.

          >>> with gmpy2.local_context(gmpy2.context(), precision=100) as ctx:
          ...   print(gmpy2.sqrt(2))
          ...   ctx.precision += 100
          ...   print(gmpy2.sqrt(2))
          ...
          1.4142135623730950488016887242092
          1.4142135623730950488016887242096980785696718753769480731766796
          >>>

       A  context  object  can  also  be  used  directly to create a context manager block.  However, instead of
       restoring the context to the active context when the with ... statement is executed, the restored context
       is the context used before any keyword argument modifications.

       The code:

       ::     with gmpy2.ieee(64) as ctx:

       is equivalent to:

       ::     gmpy2.set_context(gmpy2.ieee(64)) with gmpy2.local_context() as ctx:

       Contexts that implement the standard single, double, and quadruple precision floating point types can  be
       created using ieee().

   mpfr Methods
       as_integer_ratio()
              Returns  a  2-tuple containing the numerator and denominator after converting the mpfr object into
              the exact rational equivalent. The return 2-tuple is  equivalent  to  Python's  as_integer_ratio()
              method of built-in float objects.

       as_mantissa_exp()
              Returns a 2-tuple containing the mantissa and exponent.

       as_simple_fraction()
              Returns  an  mpq  containing  the simplest rational value that approximates the mpfr value with an
              error less than 1/(2**precision).

       conjugate()
              Returns the complex conjugate. For mpfr objects, returns a copy of the original object.

       digits()
              Returns a 3-tuple containing the mantissa, the exponent, and the number of bits of precision.  The
              mantissa  is  represented as a string in the specified base with up to 'prec' digits. If 'prec' is
              0, as many digits that are available are  returned.  No  more  digits  than  available  given  x's
              precision are returned. 'base' must be between 2 and 62, inclusive.

       is_integer()
              Returns True if the mpfr object is an integer.

   mpfr Attributes
       imag   Returns the imaginary component. For mpfr objects, returns 0.

       precision
              Returns the precision of the mpfr object.

       rc     The  result  code (also known as ternary value in the MPFR documentation) is 0 if the value of the
              mpfr object is exactly equal to the exact, infinite precision value. If the result code is 1, then
              the value of the mpfr object is greater than the exact value. If the result code is -1,  then  the
              value of the mpfr object is less than the exact, infinite precision value.

       real   Returns the real component. For mpfr objects, returns a copy of the original object.

   mpfr Functions
       acos(...)
              acos(x)  returns  the arc-cosine of x. x is measured in radians. If context.allow_complex is True,
              then an mpc result will be returned for abs(x) > 1.

       acosh(...)
              acosh(x) returns the inverse hyperbolic cosine of x.

       add(...)
              add(x, y) returns x + y. The type of the result is based on the types of the arguments.

       agm(...)
              agm(x, y) returns the arithmetic-geometric mean of x and y.

       ai(...)
              ai(x) returns the Airy function of x.

       asin(...)
              asin(x) returns the arc-sine of x. x is measured in radians.  If  context.allow_complex  is  True,
              then an mpc result will be returned for abs(x) > 1.

       asinh(...)
              asinh(x) return the inverse hyperbolic sine of x.

       atan(...)
              atan(x) returns the arc-tangent of x. x is measured in radians.

       atan2(...)
              atan2(y, x) returns the arc-tangent of (y/x).

       atanh(...)
              atanh(x)  returns  the  inverse hyperbolic tangent of x. If context.allow_complex is True, then an
              mpc result will be returned for abs(x) > 1.

       cbrt(...)
              cbrt(x) returns the cube root of x.

       ceil(...)
              ceil(x) returns the 'mpfr' that is the smallest integer >= x.

       check_range(...)
              check_range(x) return a new 'mpfr' with exponent that lies within the current range  of  emin  and
              emax.

       const_catalan(...)
              const_catalan([precision=0])  returns  the Catalan's constant using the specified precision. If no
              precision is specified, the default precision is used.

       const_euler(...)
              const_euler([precision=0]) returns the Euler's constant  using  the  specified  precision.  If  no
              precision is specified, the default precision is used.

       const_log2(...)
              const_log2([precision=0]) returns the log2 constant using the specified precision. If no precision
              is specified, the default precision is used.

       const_pi(...)
              const_pi([precision=0])  returns the constant pi using the specified precision. If no precision is
              specified, the default precision is used.

       context(...)
              context() returns a new context manager controlling MPFR and MPC arithmetic.

       cos(...)
              cos(x) returns the cosine of x. x is measured in radians.

       cosh(...)
              cosh(x) returns the hyperbolic cosine of x.

       cot(...)
              cot(x) returns the cotangent of x. x is measured in radians.

       coth(...)
              coth(x) returns the hyperbolic cotangent of x.

       csc(...)
              csc(x) returns the cosecant of x. x is measured in radians.

       csch(...)
              csch(x) returns the hyperbolic cosecant of x.

       degrees(...)
              degrees(x) converts an angle measurement x from radians to degrees.

       digamma(...)
              digamma(x) returns the digamma of x.

       div(...)
              div(x, y) returns x / y. The type of the result is based on the types of the arguments.

       div_2exp(...)
              div_2exp(x, n) returns an 'mpfr' or 'mpc' divided by 2**n.

       eint(...)
              eint(x) returns the exponential integral of x.

       erf(...)
              erf(x) returns the error function of x.

       erfc(...)
              erfc(x) returns the complementary error function of x.

       exp(...)
              exp(x) returns e**x.

       exp10(...)
              exp10(x) returns 10**x.

       exp2(...)
              exp2(x) returns 2**x.

       expm1(...)
              expm1(x) returns e**x - 1. expm1() is more accurate than exp(x) - 1 when x is small.

       f2q(...)
              f2q(x[,err]) returns the simplest mpq approximating x to within relative error err. Default is the
              precision of x. Uses Stern-Brocot tree to find the simplest approximation. An mpz is  returned  if
              the denominator is 1. If err<0, error sought is 2.0 ** err.

       factorial(...)
              factorial(n) returns the floating-point approximation to the factorial of n.

              See fac(n) to get the exact integer result.

       floor(...)
              floor(x) returns the 'mpfr' that is the largest integer <= x.

       fma(...)
              fma(x, y, z) returns correctly rounded result of (x * y) + z.

       fmma(...)
              fmma(x, y, z, t) returns correctly rounded result of (x * y) + (z * t).  Requires MPFR 4.

       fmms(...)
              fmms(x, y, z, t) returns correctly rounded result of (x * y) - (z * t).  Requires MPFR 4.

       fmod(...)
              fmod(x, y) returns x - n*y where n is the integer quotient of x/y, rounded to 0.

       fms(...)
              fms(x, y, z) returns correctly rounded result of (x * y) - z.

       frac(...)
              frac(x) returns the fractional part of x.

       frexp(...)
              frexp(x) returns a tuple containing the exponent and mantissa of x.

       fsum(...)
              fsum(iterable) returns the accurate sum of the values in the iterable.

       gamma(...)
              gamma(x) returns the gamma of x.

       get_exp(...)
              get_exp(mpfr)  returns  the exponent of an mpfr. Returns 0 for NaN or Infinity and sets the erange
              flag and will raise an exception if trap_erange is set.

       hypot(...)
              hypot(y, x) returns square root of (x**2 + y**2).

       ieee(...)
              ieee(bitwidth) returns a context with settings for 32-bit (aka single), 64-bit  (aka  double),  or
              128-bit (aka quadruple) precision floating point types.

       inf(...)
              inf(n)  returns  an  mpfr  initialized  to  Infinity  with the same sign as n.  If n is not given,
              +Infinity is returned.

       is_finite(...)
              is_finite(x) returns True if x is an actual number (i.e. not NaN or Infinity).

       is_inf(...)
              is_inf(x) returns True if x is Infinity or -Infinity.

              NOTE:
                 is_inf() is deprecated; please use if_infinite().

       is_infinite(...)
              is_infinite(x) returns True if x Infinity or -Infinity.

       is_nan(...)
              is_nan(x) returns True if x is NaN (Not-A-Number).

       is_number(...)
              is_number(x) returns True if x is an actual number (i.e. not NaN or Infinity).

              NOTE:
                 is_number() is deprecated; please use is_finite().

       is_regular(...)
              is_regular(x) returns True if x is not zero, NaN, or Infinity.

       is_signed(...)
              is_signed(x) returns True if the sign bit of x is set.

       is_unordered(...)
              is_unordered(x,y) returns True if either x and/or y is NaN.

       is_zero(...)
              is_zero(x) returns True if x is zero.

       j0(...)
              j0(x) returns the Bessel function of the first kind of order 0 of x.

       j1(...)
              j1(x) returns the Bessel function of the first kind of order 1 of x.

       jn(...)
              jn(x,n) returns the Bessel function of the first kind of order n of x.

       lgamma(...)
              lgamma(x) returns a tuple containing the logarithm of the absolute value of gamma(x) and the  sign
              of gamma(x)

       li2(...)
              li2(x) returns the real part of dilogarithm of x.

       lngamma(...)
              lngamma(x) returns the logarithm of gamma(x).

       log(...)
              log(x) returns the natural logarithm of x.

       log10(...)
              log10(x) returns the base-10 logarithm of x.

       log1p(...)
              log1p(x) returns the natural logarithm of (1+x).

       log2(...)
              log2(x) returns the base-2 logarithm of x.

       max2(...)
              max2(x, y) returns the maximum of x and y. The result may be rounded to match the current context.
              Use the builtin max() to get an exact copy of the largest object without any rounding.

       min2(...)
              min2(x, y) returns the minimum of x and y. The result may be rounded to match the current context.
              Use the builtin min() to get an exact copy of the smallest object without any rounding.

       modf(...)
              modf(x) returns a tuple containing the integer and fractional portions of x.

       mpfr(...)
              mpfr() returns and mpfr object set to 0.0.

              mpfr(n[, precision=0]) returns an mpfr object after converting a numeric value n. If no precision,
              or a precision of 0, is specified; the precision is taken from the current context.

              mpfr(s[,  precision=0[, [base=0]]) returns an mpfr object after converting a string 's' made up of
              digits in the given base, possibly with fractional  part  (with  period  as  a  separator)  and/or
              exponent  (with exponent marker 'e' for base<=10, else '@'). If no precision, or a precision of 0,
              is specified;  the  precision  is  taken  from  the  current  context.  The  base  of  the  string
              representation  must be 0 or in the interval 2 ... 62. If the base is 0, the leading digits of the
              string are used to identify the base: 0b implies base=2, 0x implies base=16, otherwise base=10  is
              assumed.

       mpfr_from_old_binary(...)
              mpfr_from_old_binary(string)  returns  an  mpfr  from  a  GMPY  1.x  binary mpf format. Please use
              to_binary()/from_binary() to convert GMPY2 objects to or from a binary format.

       mpfr_grandom(...)
              mpfr_grandom(random_state) returns two random numbers with Gaussian  distribution.  The  parameter
              random_state must be created by random_state() first.

       mpfr_random(...)
              mpfr_random(random_state)  returns  a  uniformly  distributed  number between [0,1]. The parameter
              random_state must be created by random_state() first.

       mul(...)
              mul(x, y) returns x * y. The type of the result is based on the types of the arguments.

       mul_2exp(...)
              mul_2exp(x, n) returns 'mpfr' or 'mpc' multiplied by 2**n.

       nan(...)
              nan() returns an 'mpfr' initialized to NaN (Not-A-Number).

       next_above(...)
              next_above(x) returns the next 'mpfr' from x toward +Infinity.

       next_below(...)
              next_below(x) returns the next 'mpfr' from x toward -Infinity.

       radians(...)
              radians(x) converts an angle measurement x from degrees to radians.

       rec_sqrt(...)
              rec_sqrt(x) returns the reciprocal of the square root of x.

       reldiff(...)
              reldiff(x, y) returns the relative difference between x and y. Result is equal to abs(x-y)/x.

       remainder(...)
              remainder(x, y) returns x - n*y where n is the integer quotient of x/y,  rounded  to  the  nearest
              integer and ties rounded to even.

       remquo(...)
              remquo(x, y) returns a tuple containing the remainder(x,y) and the low bits of the quotient.

       rint(...)
              rint(x) returns x rounded to the nearest integer using the current rounding mode.

       rint_ceil(...)
              rint_ceil(x)  returns  x  rounded  to  the nearest integer by first rounding to the next higher or
              equal integer and then, if needed, using the current rounding mode.

       rint_floor(...)
              rint_floor(x) returns x rounded to the nearest integer by first rounding  to  the  next  lower  or
              equal integer and then, if needed, using the current rounding mode.

       rint_round(...)
              rint_round(x)  returns  x  rounded to the nearest integer by first rounding to the nearest integer
              (ties away from 0) and then, if needed, using the current rounding mode.

       rint_trunc(...)
              rint_trunc(x) returns x rounded to the nearest integer by first rounding towards zero and then, if
              needed, using the current rounding mode.

       root(...)
              root(x, n) returns n-th root of x. The result always an mpfr.

       round2(...)
              round2(x[, n]) returns x rounded to n bits. Uses default precision if  n  is  not  specified.  See
              round_away()  to access the mpfr_round() function. Use the builtin round() to round x to n decimal
              digits.

       round_away(...)
              round_away(x) returns an mpfr by rounding x the nearest integer, with ties rounded away from 0.

       sec(...)
              sec(x) returns the secant of x. x is measured in radians.

       sech(...)
              sech(x) returns the hyperbolic secant of x.

       set_exp(...)
              set_exp(x, n) sets the exponent of a given mpfr  to  n.  If  n  is  outside  the  range  of  valid
              exponents,  set_exp()  will  set  the erange flag and either return the original value or raise an
              exception if trap_erange is set.

       set_sign(...)
              set_sign(x, bool) returns a copy of x with it's sign bit set if bool evaluates to True.

       sign(...)
              sign(x) returns -1 if x < 0, 0 if x == 0, or +1 if x >0.

       sin(...)
              sin(x) returns the sine of x. x is measured in radians.

       sin_cos(...)
              sin_cos(x) returns a tuple containing the sine and cosine of x. x is measured in radians.

       sinh(...)
              sinh(x) returns the hyberbolic sine of x.

       sinh_cosh(...)
              sinh_cosh(x) returns a tuple containing the hyperbolic sine and cosine of x.

       sqrt(...)
              sqrt(x) returns the square root of x. If x is integer, rational, or real, then  an  mpfr  will  be
              returned.  If  x  is  complex,  then  an  mpc  will be returned. If context.allow_complex is True,
              negative values of x will return an mpc.

       square(...)
              square(x) returns x * x. The type of the result is based on the types of the arguments.

       sub(...)
              sub(x, y) returns x - y. The type of the result is based on the types of the arguments.

       tan(...)
              tan(x) returns the tangent of x. x is measured in radians.

       tanh(...)
              tanh(x) returns the hyperbolic tangent of x.

       trunc(...)
              trunc(x) returns an 'mpfr' that is x truncated towards 0. Same as x.floor() if x>=0 or x.ceil() if
              x<0.

       y0(...)
              y0(x) returns the Bessel function of the second kind of order 0 of x.

       y1(...)
              y1(x) returns the Bessel function of the second kind of order 1 of x.

       yn(...)
              yn(x,n) returns the Bessel function of the second kind of order n of x.

       zero(...)
              zero(n) returns an mpfr initialized to 0.0 with the same sign as n.  If n is not  given,  +0.0  is
              returned.

       zeta(...)
              zeta(x) returns the Riemann zeta of x.

   mpfr Formatting
       The mpfr type supports the __format__() special method to allow custom output formatting.

       __format__(...)
              x.__format__(fmt) returns a Python string by formatting 'x' using the format string 'fmt'. A valid
              format string consists of:
              optional alignment code:
                '<' -> left shifted in field
                '>' -> right shifted in field
                '^' -> centered in field
              optional leading sign code
                '+' -> always display leading sign
                '-' -> only display minus for negative values
                ' ' -> minus for negative values, space for positive values
              optional width.precision
              optional rounding mode:
                'U' -> round toward plus infinity
                'D' -> round toward minus infinity
                'Y' -> round away from zero
                'Z' -> round toward zero
                'N' -> round to nearest
              optional conversion code:
                'a','A' -> hex format
                'b'     -> binary format
                'e','E' -> scientific format
                'f','F' -> fixed point format
                'g','G' -> fixed or scientific format

              NOTE:
                 The formatting codes must be specified in the order shown above.

          >>> import gmpy2
          >>> from gmpy2 import mpfr
          >>> a=mpfr("1.23456")
          >>> "{0:15.3f}".format(a)
          '          1.235'
          >>> "{0:15.3Uf}".format(a)
          '          1.235'
          >>> "{0:15.3Df}".format(a)
          '          1.234'
          >>> "{0:.3Df}".format(a)
          '1.234'
          >>> "{0:+.3Df}".format(a)
          '+1.234'

MULTIPLE-PRECISION COMPLEX

       gmpy2  adds  a  multiple-precision  complex type called mpc that is based on the MPC library. The context
       manager settings for mpfr arithmetic are applied to mpc arithmetic by default. It is possible to  specify
       different precision and rounding modes for both the real and imaginary components of an mpc.

          >>> import gmpy2
          >>> from gmpy2 import mpc
          >>> gmpy2.sqrt(mpc("1+2j"))
          mpc('1.272019649514069+0.78615137775742328j')
          >>> gmpy2.set_context(gmpy2.context(real_prec=100,imag_prec=200))
          >>> gmpy2.get_context()
          context(precision=53, real_prec=100, imag_prec=200,
                  round=RoundToNearest, real_round=Default, imag_round=Default,
                  emax=1073741823, emin=-1073741823,
                  subnormalize=False,
                  trap_underflow=False, underflow=False,
                  trap_overflow=False, overflow=False,
                  trap_inexact=False, inexact=True,
                  trap_invalid=False, invalid=False,
                  trap_erange=False, erange=False,
                  trap_divzero=False, divzero=False,
                  trap_expbound=False,
                  allow_complex=False)
          >>> gmpy2.sqrt(mpc("1+2j"))
          mpc('1.2720196495140689642524224617376+0.78615137775742328606955858584295892952312205783772323766490213j',(100,200))

       Exceptions  are  normally  raised  in  Python when the result of a real operation is not defined over the
       reals; for example, sqrt(-4) will raise an exception. The default context in gmpy2  implements  the  same
       behavior but by setting allow_complex to True, complex results will be returned.

          >>> import gmpy2
          >>> from gmpy2 import mpc
          >>> gmpy2.sqrt(-4)
          mpfr('nan')
          >>> gmpy2.get_context().allow_complex=True
          >>> gmpy2.sqrt(-4)
          mpc('0.0+2.0j')

   mpc Methods
       conjugate()
              Returns the complex conjugate.

       digits()
              Returns  a  two element tuple where each element represents the real and imaginary components as a
              3-tuple containing the mantissa, the exponent, and the number of bits of precision.  The  mantissa
              is represented as a string in the specified base with up to 'prec' digits. If 'prec' is 0, as many
              digits  that  are  available  are  returned. No more digits than available given x's precision are
              returned. 'base' must be between 2 and 62, inclusive.

   mpc Attributes
       imag   Returns the imaginary component.

       precision
              Returns a 2-tuple containing the precision of the real and imaginary components.

       rc     Returns a 2-tuple containing the ternary value of the real and imaginary components.  The  ternary
              value  is 0 if the value of the component is exactly equal to the exact, infinite precision value.
              If the result code is 1, then the value of the component is greater than the exact value.  If  the
              result  code  is  -1,  then  the value of the component is less than the exact, infinite precision
              value.

       real   Returns the real component.

   mpc Functions
       acos(...)
              acos(x) returns the arc-cosine of x.

       acosh(...)
              acosh(x) returns the inverse hyperbolic cosine of x.

       add(...)
              add(x, y) returns x + y. The type of the result is based on the types of the arguments.

       asin(...)
              asin(x) returns the arc-sine of x.

       asinh(...)
              asinh(x) return the inverse hyperbolic sine of x.

       atan(...)
              atan(x) returns the arc-tangent of x.

       atanh(...)
              atanh(x) returns the inverse hyperbolic tangent of x.

       cos(...)
              cos(x) returns the cosine of x.

       cosh(...)
              cosh(x) returns the hyperbolic cosine of x.

       div(...)
              div(x, y) returns x / y. The type of the result is based on the types of the arguments.

       div_2exp(...)
              div_2exp(x, n) returns an 'mpfr' or 'mpc' divided by 2**n.

       exp(...)
              exp(x) returns e**x.

       fma(...)
              fma(x, y, z) returns correctly rounded result of (x * y) + z.

       fms(...)
              fms(x, y, z) returns correctly rounded result of (x * y) - z.

       is_inf(...)
              is_inf(x) returns True if either the real or imaginary component of x is Infinity or -Infinity.

       is_nan(...)
              is_nan(x) returns True if either the real or imaginary component of x is NaN (Not-A-Number).

       is_zero(...)
              is_zero(x) returns True if x is zero.

       log(...)
              log(x) returns the natural logarithm of x.

       log10(...)
              log10(x) returns the base-10 logarithm of x.

       mpc(...)
              mpc() returns an mpc object set to 0.0+0.0j.

              mpc(c[, precision=0]) returns a new 'mpc' object from an existing complex number (either a  Python
              complex  object or another 'mpc' object). If the precision is not specified, then the precision is
              taken from the current context. The rounding mode is always taken from the current context.

              mpc(r[, i=0[, precision=0]]) returns a new 'mpc' object by converting two non-complex numbers into
              the real and imaginary components of an 'mpc' object. If the precision is not specified, then  the
              precision  is  taken  from the current context. The rounding mode is always taken from the current
              context.

              mpc(s[, [precision=0[, base=10]]) returns a new 'mpc' object by  converting  a  string  s  into  a
              complex  number.  If  base  is  omitted, then a base-10 representation is assumed otherwise a base
              between 2 and 36 can be specified. If the precision is not specified, then the precision is  taken
              from the current context. The rounding mode is always taken from the current context.

              In  addition  to the standard Python string representation of a complex number: "1+2j", the string
              representation used by the MPC library: "(1 2)" is also supported.

              NOTE:
                 The precision can be specified either a single number that  is  used  for  both  the  real  and
                 imaginary  components,  or  as a 2-tuple that can specify different precisions for the real and
                 imaginary components.

       mpc_random(...)
              mpfc_random(random_state) returns a uniformly distributed number in the unit  square  [0,1]x[0,1].
              The parameter random_state must be created by random_state() first.

       mul(...)
              mul(x, y) returns x * y. The type of the result is based on the types of the arguments.

       mul_2exp(...)
              mul_2exp(x, n) returns 'mpfr' or 'mpc' multiplied by 2**n.

       norm(...)
              norm(x)  returns  the norm of a complex x. The norm(x) is defined as x.real**2 + x.imag**2. abs(x)
              is the square root of norm(x).

       phase(...)
              phase(x) returns the phase angle, also known as argument, of a complex x.

       polar(...)
              polar(x) returns the polar coordinate form of a complex x that is in rectangular form.

       proj(...)
              proj(x) returns the projection of a complex x on to the Riemann sphere.

       rect(...)
              rect(x) returns the polar coordinate form of a complex x that is in rectangular form.

       root_of_unity(...)
              root_of_unity(n, k) returns the n-th root of mpc(1) raised to the k-th power. Requires  MPC  1.1.0
              or greater.

       sin(...)
              sin(x) returns the sine of x.

       sinh(...)
              sinh(x) returns the hyberbolic sine of x.

       sqrt(...)
              sqrt(x)  returns  the  square  root of x. If x is integer, rational, or real, then an mpfr will be
              returned. If x is complex, then an  mpc  will  be  returned.  If  context.allow_complex  is  True,
              negative values of x will return an mpc.

       square(...)
              square(x) returns x * x. The type of the result is based on the types of the arguments.

       sub(...)
              sub(x, y) returns x - y. The type of the result is based on the types of the arguments.

       tan(...)
              tan(x) returns the tangent of x. x is measured in radians.

       tanh(...)
              tanh(x) returns the hyperbolic tangent of x.

   mpc Formatting
       The mpc type supports the __format__() special method to allow custom output formatting.

       __format__(...)
              x.__format__(fmt) returns a Python string by formatting 'x' using the format string 'fmt'. A valid
              format string consists of:
              optional alignment code:
                '<' -> left shifted in field
                '>' -> right shifted in field
                '^' -> centered in field
              optional leading sign code
                '+' -> always display leading sign
                '-' -> only display minus for negative values
                ' ' -> minus for negative values, space for positive values
              optional width.real_precision.imag_precision
              optional rounding mode:
                'U' -> round toward plus infinity
                'D' -> round toward minus infinity
                'Z' -> round toward zero
                'N' -> round to nearest
              optional output style:
                'P' -> Python style, 1+2j, (default)
                'M' -> MPC style, (1 2)
              optional conversion code:
                'a','A' -> hex format
                'b'     -> binary format
                'e','E' -> scientific format
                'f','F' -> fixed point format
                'g','G' -> fixed or scientific format

              NOTE:
                 The formatting codes must be specified in the order shown above.

          >>> import gmpy2
          >>> from gmpy2 import mpc
          >>> a=gmpy2.sqrt(mpc("1+2j"))
          >>> a
          mpc('1.272019649514069+0.78615137775742328j')
          >>> "{0:.4.4Mf}".format(a)
          '(1.2720 0.7862)'
          >>> "{0:.4.4f}".format(a)
          '1.2720+0.7862j'
          >>> "{0:^20.4.4U}".format(a)
          '   1.2721+0.7862j   '
          >>> "{0:^20.4.4D}".format(a)
          '   1.2720+0.7861j   '

CYTHON USAGE

       The gmpy2 module provides a C-API that can be conveniently used from Cython.  All types and functions are
       declared  in  the  header gmpy2.pxd that is installed automatically in your Python path together with the
       library.

   Initialization
       In order to use the C-API you need to make one call to the function void import_gmpy2(void).

   Types
       The types mpz, mpq, mpfr  and  mpc  are  declared  as  extension  types  in  gmpy2.pxd.  They  correspond
       respectively to the C structures MPZ_Object, MPQ_Object, MPFR_Object and MPC_Object.

       Fast type checking can be done with the following C functions

       bint MPZ_Check(object)
              equivalent to isinstance(obj, mpz)

       bint MPQ_Check(object)
              equivalent to isinstance(obj, mpq)

       bint MPFR_Check(object)
              equivalent to isinstance(obj, mpfr)

       bint MPC_Check(object)
              equivalent to isinstance(obj, mpc)

   Object creation
       To create a new gmpy2 types there are four basic functions

       mpz GMPy_MPZ_New(void * ctx)
              create a new mpz object from a given context ctx

       mpq GMPy_MPQ_New(void * ctx)
              create a new mpq object from a given context ctx

       mpfr MPFR_New(void * ctx, mpfr_prec_t prec)
              create a new mpfr object with given context ctx and precision prec

       mpc MPC_New(void * ctx, mpfr_prec_t rprec, mpfr_prec_t iprec)
              create  a  new  mpc object with given context ctx, precisions rprec and iprec of respectively real
              and imaginary parts

       The context can be set to NULL and controls the default behavior (e.g. precision).

       The gmpy2.pxd header also provides convenience macro to wrap a (copy of) a  mpz_t,  mpq_t,  mpfr_t  or  a
       mpc_t object into the corresponding gmpy2 type.

       mpz GMPy_MPZ_From_mpz(mpz_srcptr z)
              return a new mpz object with a given mpz_t value z

       mpq GMPy_MPQ_From_mpq(mpq_srcptr q)
              return a new mpq object from a given mpq_t value q

       mpq GMPy_MPQ_From_mpz(mpz_srcptr num, mpz_srcptr den)
              return a new mpq object with a given mpz_t numerator num and mpz_t denominator den

       mpfr GMPy_MPFR_From_mpfr(mpfr_srcptr x)
              return a new mpfr object with a given mpfr_t value x

       mpc GMPy_MPC_From_mpc(mpc_srcptr c)
              return a new mpc object with a given mpc_t value c

       mpc GMPy_MPC_From_mpfr(mpfr_srcptr re, mpfr_srcptr im)
              return a new mpc object with a given mpfr_t real part re and mpfr_t imaginary part im

   Access to the underlying C type
       Each  of  the  gmpy2  objects has a field corresponding to the underlying C type. The following functions
       give access to this field

       mpz_t MPZ(mpz)

       mpq_t MPQ(mpq)

       mpfr_t MPFR(mpfr)

       mpc_t MPC(mpc)

   Compilation
       The header gmpy2.pxd as well as the C header gmpy2.h from which it depends are installed  in  the  Python
       path.  In  order to make Cython and the C compiler aware of the existence of these files, the Python path
       should be part of the include directories.

       Recall that import_gmpy2() needs to be called before any other function of the C-API.

       Here is a minimal example of a Cython file test_gmpy2.pyx

          "A minimal cython file test_gmpy2.pyx"

          from gmpy2 cimport *

          cdef extern from "gmp.h":
              void mpz_set_si(mpz_t, long)

          import_gmpy2()   # needed to initialize the C-API

          cdef mpz z = GMPy_MPZ_New(NULL)
          mpz_set_si(MPZ(z), -7)

          print(z + 3)

       The corresponding setup.py is given below.

          "A minimal setup.py for compiling test_gmpy2.pyx"

          from distutils.core import setup
          from distutils.extension import Extension
          from Cython.Build import cythonize
          import sys

          ext = Extension("test_gmpy2", ["test_gmpy2.pyx"], include_dirs=sys.path, libraries=['gmp', 'mpfr', 'mpc'])

          setup(
              name="cython_gmpy_test",
              ext_modules=cythonize([ext], include_path=sys.path)
          )

       With these two files in the same repository, you should be able to compile your module using

          $ python setup.py build_ext --inplace

       For more about compilation and installation of cython files and extension modules, please  refer  to  the
       official documentation of Cython and distutils.

CONVERSION METHODS AND GMPY2'S NUMBERS

   Conversion methods
       A python object could interact with gmpy2 if it implements one of the following methods:

       • __mpz__ : return an object of <type 'mpz'>.

       • __mpq__ : return an object of <type 'mpq'>.

       • __mpfr__ : return an object of <type 'mpfr'>.

       • __mpc__ : return an object of <type 'mpc'>.
       Implementing on of these methods allow gmpy2 to convert a python object into a gmpy2 type.
       Example::

       >>> from gmpy2 import mpz
       >>> class CustInt:
       ...     def __init__(self, x):
       ...             self.x = x
       ...     def __mpz__(self):
       ...             return mpz(self.x)
       ...
       >>> ci = CustInt(5)
       >>> z = mpz(ci); z
       mpz(5)
       >>> type(z)
       <type 'mpz'>

   Arithmetic operations
       gmpy2 allow arithmetic operations between gmpy2 numbers and objects with conversion methods.
       Operation with object that implements floating conversion and exact conversion methods are not supported.
       That means that only the following cases are supported:

       • An integer type have to implement __mpz__

       • A rational type have to implement __mpq__ and can implement __mpz__

       • A real type have to implement __mpfr__

       • A complex type have to implement __mpc__ and can implement __mpfr__

       Examples:

          >>> from gmpy2 import mpz, mpq, mpfr, mpc
          >>> class Q:
          ...     def __mpz__(self): return mpz(1)
          ...     def __mpq__(self): return mpq(3,2)
          >>> q = Q()
          >>> mpz(2) + q
          mpq(7,2)
          >>> mpq(1,2) * q
          mpq(3,4)
          >>> mpfr(10) * q
          mpfr('15.0')

CHANGES FOR GMPY2 RELEASES

   Changes in gmpy2 2.1.0rc2
       • Documentation updates.

       • Improvements to build environment.

   Changes in gmpy2 2.1.0rc1Added support for embedded underscore characters in string
                literals.

       • Allow GIL release for mpz/xmpz/mpq types only.

   Changes in gmpy2 2.1.0b6Improve argument type processing by saving type information to
                decrease  the  number  of  type  check  calls.  Especially  helpful for mpfr and mpc types. (Not
                complete but common operations are done.)

       • Resolve bug in mpfr to mpq conversion; issue #287.

       •

         Added limited support for releasing the GIL; disabled by default;
                see context.allow_release_gil.

       •

         Refactored handling of inplace operations for mpz and xmpz types;
                inplace operations on xmpz will only return an xmpz result.

       •

         Refactored handling of conversion to C integer types. Some
                exception types changes to reflect Python types.

       •

         gcd() and lcm() now support more than two arguments to align with
                the corresponding functions in the math module.

   Changes in gmpy2 2.1.0b5Avoid MPFR bug in mfr_fac_ui (gmpy2.factorial) on platforms where
                long is 32-bits and argument is >= 44787929.

       • Fixed testing bugs with Python 2.7.

       • Fixed mpz(0) to C long or long long.

       • Fixed incorrect results in f2q().

       • Adjust test suite to reflect changes in output in MPFR 4.1.0.

   Changes in gmpy2 2.1.0b4
       • Fix comparisons with mpq and custom rational objects.

       • Fixes for some uncommon integer conversions scenarios.

   Changes in gmpy2 2.1.0b3
       • Version bump only.

   Changes in gmpy2 2.1.0b2
       • Many bug fixes.

   Changes in gmpy2 2.1.0b1
       • Added cmp() and cmp_abs().

       • Improved compatibility with _numbers_ protocol.

       • Many bug fixes.

   Changes in gmpy2 2.1.a05
       • Fix qdiv() not returning mpz() when it should.

       • Added root_of_unity().

   Changes in gmpy2 2.1.0a4
       • Fix issue 204; missing file for Cython.

       •

         Additional support for MPFR 4

                • Add fmma() and fmms()

   Changes in gmpy2 2.1.0a3
       • Updates to setup.py.

       •

         Initial support for MPFR4

                • Add nrandom()

                • grandom() now calls nrandom twice; may return different values versus MPFR3

                • Add rootn(); same as root() except different sign when taking even root of -0.0

   Changes in gmpy2 2.1.0a2
       • Revised build process.

       • Removal of unused code/macros.

       • Cleanup of Cython interface.

   Changes in gmpy2 2.1.0a1
       • Thread-safe contexts are now supported. Properly integrating thread-safe contexts required an extensive
         rewrite of almost all internal functions.

       • MPFR and MPC are now required. It is no longer possible to build a version of gmpy2 that only  supports
         the GMP library.

       • The function inverse() now raises an exception if the inverse does not exist.

       • Context methods have been added for MPFR/MPC related functions.

       • A  new  context option (rational_division) has been added that changes the behavior of integer division
         involving mpz instances to return a rational result instead of a floating point result.

       • gmpy2 types are now registered in the numeric tower.

       • In previous versions of gmpy2, gmpy2.mpz was  a  factory  function  that  returned  an   mpz  instance.
         gmpy2.mpz is now an actual type. The same is true for the other gmpy2 types.

       • If  a Python object has an __mpz__ method, it will be called bye mpz() to allow an unrecognized type to
         be converted to an mpz instance. The same is true for the other gmpy2 types.

       • A new C-API and Cython interface has been added.

   Changes in gmpy2 2.0.4
       • Fix bit_scan0() for negative values.

       • Changes to setup.py to allow static linking.

       • Fix performance regression with mpmath and Python 3.

   Changes in gmpy2 2.0.3
       • Fix lucas2() and atanh(); they were returning incorrect values.

   Changes in gmpy2 2.0.2
       • Rebuild Windows binary installers due to MPIR 2.6.0 bug in next_prime().

       • Another fix for is_extra_strong_lucas_prp().

   Changes in gmpy2 2.0.1
       • Updated setup.py to work in more situations.

       • Corrected exception handling in basic operations with mpfr type.

       • Correct InvalidOperation exception not raised in certain circumstances.

       • invert() now raises an exception if the modular inverse does not exist.

       • Fixed internal exception in is_bpsw_prp() and is_strong_bpsw_prp().

       • Updated is_extra_strong_lucas_prp() to latest version.

   Changes in gmpy2 2.0.0
       • Fix segmentation fault in _mpmath_normalize (an undocumented helper function specifically for mpmath.)

       • Improved setup.py See below for documentation on the changes.

       • Fix issues when compiled without support for MPFR.

       • Conversion of too large an mpz to float now raises OverflowError instead of returning inf.

       • Renamed min2()/max2() to minnum()/maxnum()

       • The build and install process (i.e. setup.py) has been  completely  rewritten.   See  the  Installation
         section for more information.

       • get_context() no longer accepts keyword arguments.

   Known issues in gmpy2 2.0.0
       • The test suite is still incomplete.

   Changes in gmpy2 2.0.0b4
       • Added __ceil__, __floor__, __trunc__, and __round__ methods to mpz and mpq types.

       • Added __complex__ to mpc type.

       • round(mpfr) now correctly returns an mpz type.

       • If no arguments are given to mpz, mpq, mpfr, mpc, and xmpz, return 0 of the appropriate type.

       • Fix broken comparison between mpz and mpq when mpz is on the left.

       • Added __sizeof__ to all types. Note: sys.getsizeof() calls __sizeof__ to get the memory size of a gmpy2
         object.  The  returned  value  reflects  the  size of the allocated memory which may be larger than the
         actual minimum memory required by the object.

   Known issues in gmpy2 2.0.0b4
       • The new test suite (test/runtest.py) is incomplete and some tests fail on Python 2.x due to  formatting
         issues.

   Changes in gmpy2 2.0.0b3
       • mp_version(),  mpc_version(),  and  mpfr_version()  now  return normal strings on Python 2.x instead of
         Unicode strings.

       • Faster conversion of the standard library Fraction type to mpq.

       • Improved conversion of the Decimal type to mpfr.

       • Consistently return OverflowError when converting "inf".

       • Fix mpz.__format__() when the format code includes "#".

       • Add is_infinite() and deprecate is_inf().

       • Add is_finite() and deprecate is_number().

       • Fixed the various is_XXX() tests when used with mpc.

       • Added caching for mpc objects.

       • Faster code path for basic operation is both operands are mpfr or mpc.

       • Fix mpfr + float segmentation fault.

   Changes in gmpy2 2.0.0b2
       • Allow xmpz slice assignment to increase length of xmpz instance by specifying a value for stop.

       • Fixed reference counting bug in several is_xxx_prp() tests.

       • Added iter_bits(), iter_clear(), iter_set() methods to xmpz.

       • Added powmod() for easy access to three argument pow().

       • Removed addmul() and submul() which were added in 2.0.0b1 since they are slower than just using  Python
         code.

       • Bug fix in gcd_ext when both arguments are not mpz.

       • Added ieee() to create contexts for 32, 64, or 128 bit floats.

       • Bug fix in context() not setting emax/emin correctly if they had been changed earlier.

       • Contexts  can  be  directly  used  in  with  statement  without requiring set_context()/local_context()
         sequence.

       • local_context() now accepts an optional context.

   Changes in gmpy2 2.0.0b1 and earlier
       • Renamed functions that manipulate individual bits to bit_XXX() to align with bit_length().

       • Added caching for mpq.

       • Added rootrem(), fib2(), lucas(), lucas2().

       • Support changed hash function in Python 3.2.

       • Added is_even(), is_odd().

       • Add caching of the calculated hash value.

       • Add xmpz (mutable mpz) type.

       • Fix mpq formatting issue.

       • Add read/write bit access using slices to xmpz.

       • Add read-only bit access using slices to mpz.

       • Add pack()/unpack() methods to split/join an integer into n-bit chunks.

       • Add support for MPFR (casevh)

       • Removed fcoform float conversion modifier.

       • Add support for MPC.

       • Added context manager.

       • Allow building with just GMP/MPIR if MPFR not available.

       • Allow building with GMP/MPIR and MPFR if MPC not available.

       • Removed most instance methods in favor of gmpy2.function. The general guideline is that  properties  of
         an  instance  can  be  done  via instance methods but functions that return a new result are done using
         gmpy2.function.

       • Added __ceil__, __floor__, and __trunc__ methods since they are called  by  math.ceil(),  math.floor(),
         and math.trunc().

       • Removed gmpy2.pow() to avoid conflicts.

       • Removed gmpy2._copy and added xmpz.copy.

       • Added support for __format__.

       • Added as_integer_ratio, as_mantissa_exp, as_simple_fraction.

       • Updated rich_compare.

       • Require MPFR 3.1.0+ to get divby0 support.

       • Added fsum(), degrees(), radians().

       • Updated random number generation support.

       • Changed license to LGPL 3+.

       • Added lucasu, lucasu_mod, lucasv, and lucasv_mod.  Based on code contributed by David Cleaver.

       • Added probable-prime tests.  Based on code contributed by David Cleaver.

       • Added to_binary()/from_binary.

       • Renamed numdigits() to num_digits().

       • Added keyword precision to constants.

       • Added addmul() and submul().

       • Added __round__(), round2(), round_away() for mpfr.

       • round() is no longer a module level function.

       • Renamed module functions min()/max() to min2()/max2().

       • No longer conflicts with builtin min() and max()

       • Removed set_debug() and related functionality.

       • IndexModule IndexSearch Page

AUTHOR

       Case Van Horsen

COPYRIGHT

       2024 - 2022, Case Van Horsen

2.1                                                1712832202                                           GMPY2(3)