Provided by: libmath-gsl-perl_0.44-1build3_amd64 bug

NAME

       Math::GSL::Integration - Routines for performing numerical integration (quadrature) of a function in one
       dimension

SYNOPSIS

           use Math::GSL::Integration qw /:all/;

           my $function = sub { $_[0]**2 } ;
           my ($lower, $upper ) = (0,1);
           my ($relerr,$abserr) = (0,1e-7);

           my ($status, $result, $abserr, $num_evals) = gsl_integration_qng ( $function,
                                                           $lower, $upper, $relerr, $abserr
                                                        );

DESCRIPTION

       This module allows you to numerically integrate a Perl subroutine. Depending on the properties of your
       function (singularities, smoothness) and the type of integration range (finite, infinite, semi-infinite),
       you will need to choose a quadrature routine that fits your needs.

       •   gsl_integration_workspace_alloc($n)

           This  function  allocates  a  workspace  sufficient  to  hold  $n  double  precision intervals, their
           integration results and error estimates.

       •   gsl_integration_workspace_free($w)

            This function frees the memory associated with the workspace $w.

       •   "gsl_integration_qaws_table_alloc($alpha, $beta, $mu, $nu)"

            This function allocates space for a gsl_integration_qaws_table struct
            describing a singular weight function W(x) with the parameters ($alpha, $beta,
            $mu, $nu), W(x) = (x-a)^alpha (b-x)^beta log^mu (x-a) log^nu (b-x) where
            $alpha > -1, $beta > -1, and $mu = 0, 1, $nu = 0, 1. The weight function can
            take four different forms depending on the values of $mu and $nu,

                         W(x) = (x-a)^alpha (b-x)^beta                   (mu = 0, nu = 0)
                         W(x) = (x-a)^alpha (b-x)^beta log(x-a)          (mu = 1, nu = 0)
                         W(x) = (x-a)^alpha (b-x)^beta log(b-x)          (mu = 0, nu = 1)
                         W(x) = (x-a)^alpha (b-x)^beta log(x-a) log(b-x) (mu = 1, nu = 1)

           The singular points (a,b) do not have to be specified until the integral is computed, where they  are
           the  endpoints of the integration range.  The function returns a pointer to the newly allocated table
           gsl_integration_qaws_table if no errors were detected, and 0 in the case of error.

       •   "gsl_integration_qaws_table_set($t, $alpha, $beta, $mu, $nu)"

            This function modifies the parameters ($alpha, $beta, $mu, $nu) of an existing
            gsl_integration_qaws_table struct $t.

       •   gsl_integration_qaws_table_free($t)

            This function frees all the memory associated with the
            gsl_integration_qaws_table struct $t.

       •   "gsl_integration_qawo_table_alloc($omega, $L, $sine, $n)"

       •   "gsl_integration_qawo_table_set($t, $omega, $L, $sine, $n)"

            This function changes the parameters omega, L and sine of the existing
            workspace $t.

       •   "gsl_integration_qawo_table_set_length($t, $L)"

            This function allows the length parameter $L of the workspace $t to be
            changed.

       •   gsl_integration_qawo_table_free($t)

            This function frees all the memory associated with the workspace $t.

       •   "gsl_integration_qk15($function,$a,$b,$resabs,$resasc) "

       •   "gsl_integration_qk21($function,$a,$b,$resabs,$resasc) "

       •   "gsl_integration_qk31($function,$a,$b,$resabs,$resasc) "

       •   "gsl_integration_qk41($function,$a,$b,$resabs,$resasc) "

       •   "gsl_integration_qk51($function,$a,$b,$resabs,$resasc) "

       •   "gsl_integration_qk61($function,$a,$b,$resabs,$resasc) "

       •   "gsl_integration_qcheb($function, $a, $b, $cheb12, $cheb24) "

       •   "gsl_integration_qk "

       •   "gsl_integration_qng($function,$a,$b,$epsabs,$epsrel,$num_evals) "

           This routine QNG (Quadrature Non-Adaptive Gaussian) is inexpensive is the sense that it will evaluate
           the function much fewer times than the adaptive routines.  Because of  this  it  does  not  need  any
           workspaces,  so  it  is  also  more  memory  efficient.  It should be perfectly fine for well-behaved
           functions (smooth and nonsingular), but will not be able to get the  required  accuracy  or  may  not
           converge for more complicated functions.

       •   "gsl_integration_qag($function,$a,$b,$epsabs,$epsrel,$limit,$key,$workspace) "

           This routine QAG (Quadrature Adaptive Gaussian) ...

       •   "gsl_integration_qagi($function,$epsabs,$epsrel,$limit,$workspace) "

       •   "gsl_integration_qagiu($function,$a,$epsabs,$epsrel,$limit,$workspace) "

       •   "gsl_integration_qagil($function,$b,$epsabs,$epsrel,$limit,$workspace) "

       •   "gsl_integration_qags($func,$a,$b,$epsabs,$epsrel,$limit,$workspace)"

               ($status, $result, $abserr) = gsl_integration_qags (
                                       sub { 1/$_[0]} ,
                                       1, 10, 0, 1e-7, 1000,
                                       $workspace,
                                   );

            This function applies the Gauss-Kronrod 21-point integration rule
            adaptively until an estimate of the integral of $func over ($a,$b) is
            achieved within the desired absolute and relative error limits,
            $epsabs and $epsrel.

       •   "gsl_integration_qagp($function, $pts, $npts, $epsbs, $epsrel, $limit, $workspace) "

       •   "gsl_integration_qawc($function, $a, $b, $c, $epsabs, $epsrel, $limit, $workspace) "

       •   "gsl_integration_qaws($function, $a, $b, $qaws_table, $epsabs, $epsrel, $limit, $workspace) "

       •   "gsl_integration_qawo($function, $a, $epsabs, $epsrel, $limit, $workspace, $qawo_table) "

       •   "gsl_integration_qawf($function, $a, $epsabs, $limit, $workspace, $cycle_workspace, $qawo_table) "

       This module also includes the following constants :

       •   $GSL_INTEG_COSINE

       •   $GSL_INTEG_SINE

       •   $GSL_INTEG_GAUSS15

       •   $GSL_INTEG_GAUSS21

       •   $GSL_INTEG_GAUSS31

       •   $GSL_INTEG_GAUSS41

       •   $GSL_INTEG_GAUSS51

       •   $GSL_INTEG_GAUSS61

       The  following  error  constants  are  part  of  the  Math::GSL::Errno  module and can be returned by the
       gsl_integration_* functions :

       •   $GSL_EMAXITER

           Maximum number of subdivisions was exceeded.

       •   $GSL_EROUND

           Cannot reach tolerance because of roundoff error, or roundoff error was detected in the extrapolation
           table.

       •   GSL_ESING

           A non-integrable singularity or other bad integrand behavior was found in the integration interval.

       •   GSL_EDIVERGE

           The integral is divergent, or too slowly convergent to be integrated numerically.

MORE INFO

       For  more  information  on  the  functions,  we  refer   you   to   the   GSL   official   documentation:
       <http://www.gnu.org/software/gsl/manual/html_node/>

AUTHORS

       Jonathan "Duke" Leto <jonathan@leto.net> and Thierry Moisan <thierry.moisan@gmail.com>

COPYRIGHT AND LICENSE

       Copyright (C) 2008-2023 Jonathan "Duke" Leto and Thierry Moisan

       This  program  is  free  software;  you can redistribute it and/or modify it under the same terms as Perl
       itself.

perl v5.38.2                                       2024-03-31                        Math::GSL::Integration(3pm)