Provided by: grass-doc_8.3.2-1ubuntu2_all bug

NAME

       r.topmodel  - Simulates TOPMODEL which is a physically based hydrologic model.

KEYWORDS

       raster, hydrology, model

SYNOPSIS

       r.topmodel
       r.topmodel --help
       r.topmodel    [-p]    parameters=name   topidxstats=name   input=name   output=name    [timestep=integer]
       [topidxclass=integer]   [topidx=name]   [ntopidxclasses=integer]   [outtopidxstats=name]    [--overwrite]
       [--help]  [--verbose]  [--quiet]  [--ui]

   Flags:
       -p
           Preprocess only and stop after generating outtopidxstats

       --overwrite
           Allow output files to overwrite existing files

       --help
           Print usage summary

       --verbose
           Verbose module output

       --quiet
           Quiet module output

       --ui
           Force launching GUI dialog

   Parameters:
       parameters=name [required]
           Name of input TOPMODEL parameters file

       topidxstats=name [required]
           Name of input topographic index statistics file

       input=name [required]
           Name of input rainfall and potential evapotranspiration data file

       output=name [required]
           Name for output file

       timestep=integer
           Time step
           Generate output for this time step

       topidxclass=integer
           Topographic index class
           Generate output for this topographic index class

       topidx=name
           Name of input topographic index raster map
           Must be clipped to the catchment boundary. Used for generating outtopidxstats

       ntopidxclasses=integer
           Number of topographic index classes
           Used for generating outtopidxstats
           Default: 30

       outtopidxstats=name
           Name for output topographic index statistics file
           Requires topidx and ntopidxclasses

DESCRIPTION

       r.topmodel simulates TOPMODEL which is a physically based hydrologic model.

   Parameters description
       parameters
           This file contains TOPMODEL parameters that describe the study area. Any lines starting with a # sign
           or empty lines are ignored.
           # Subcatchment name
           Subcatchment 1
           ################################################################################
           # A [m^2]: Total subcatchment area
           3.31697E+07
           ################################################################################
           # qs0 [m/h]: Initial subsurface flow per unit area
           #         "The first streamflow input is assumed to represent
           #          only the subsurface flow contribution in the watershed."
           #                                       - Liaw (1988)
           0.000075
           # lnTe [ln(m^2/h)]: Areal average of the soil surface transmissivity
           4.
           # m [m]: Parameter controlling the decline rate of transmissivity
           # See Beven and Kirkby (1979)
           0.0125
           # Sr0 [m]: Initial root zone storage deficit
           0.0025
           # Srmax [m]: Maximum root zone storage deficit
           0.041
           # td [h]: Unsaturated zone time delay per unit storage deficit if greater than 0
           #  OR
           # -alpha: Effective vertical hydraulic gradient if not greater than 0.
           #
           # For example, -10 means alpha=10.
           60.
           # vch [m/h]: Main channel routing velocity
           20000.
           # vr [m/h]: Internal subcatchment routing velocity
           10000.
           ################################################################################
           # infex: Calculate infiltration excess if not zero (integer)
           0
           # K0 [m/h]: Surface hydraulic conductivity
           2.
           # psi [m]: Wetting front suction
           0.1
           # dtheta: Water content change across the wetting front
           0.1
           ################################################################################
           # d [m]: Distance from the catchment outlet
           #         The first value should be the mainstream distance from
           #         the subcatchment outlet to the catchment outlet.
           # Ad_r:  Cumulative area ratio of subcatchment (0.0 to 1.0)
           #         The first and last values should be 0 and 1, respectively.
           #   d  Ad_r
               0   0.0
            1000   0.2
            2000   0.4
            3000   0.6
            4000   0.8
            5000   1.0

       input

           This file contains observed weather data.
           # dt [h]: Time step
           24
           ################################################################################
           # R [m/dt]:  Rainfall
           # Ep [m/dt]: Potential evapotranspiration
           # R             Ep
           0.000033        0.000000
           0.000053        0.011938
           0.004821        0.000000
           .
           .
           .

       timestep
           If  a  time step is specified, output will be generated for the specific time step in addition to the
           summary and total flows at the outlet. This parameter can be combined with topidxclass to  specify  a
           time  step  and  topographic index class at the same time. If no topidxclass is given, output will be
           generated for all the topographic index classes.

       toptopidxclass
           If a topographic index class is specified, output will be generated for the given  topographic  index
           class.  This  parameter  can  be  combined  with  timestep.  If  no timestep is given, output will be
           generated for all the time steps.

       topidx, ntoptopidxclasses, outtoptopidxstats
           The topidx map can optionally be used for creating a new topographic index statistics file. This  map
           has  to  be  already  clipped to the catchment boundary. The entire range of topographic index values
           will be divided into ntoptopidxclasses and the area ratio of each  class  will  be  reported  in  the
           outtoptopidxstats  file. These three parameters can be omitted unless a new topidxstats file needs to
           be created.

REFERENCES

           •   Beven, K. J., 1984. Infiltration into a  class  of  vertically  non-uniform  soils.  Hydrological
               Sciences Journal 29 (4), 425-434.

           •   Beven,  K. J., Kirkby, M. J., 1979. A physically based, variable contributing area model of basin
               hydrology. Hydrological Sciences Bulletin 24 (1), 43-69.

           •   Beven K. J., R. Lamb, P. Quinn, R. Romanowicz, and J.  Freer,  1995.   TOPMODEL,  in  V.P.  Singh
               (Ed.). Computer Models of Watershed Hydrology. Water Resources Publications.

           •   Cho, H., 2000. GIS Hydrological Modeling System by Using Programming Interface of GRASS. Master’s
               Thesis, Department of Civil Engineering, Kyungpook National University, South Korea.

           •   Liaw,  S.  C.,  1988.  Streamflow  Simulation  Using a Physically Based Hydrologic Model in Humid
               Forested Watersheds. Dissertation, Colorado State University, CO. p163.

           •   Morel-Seytoux, H. J., Khanji,  J.,  1974.  Derivation  of  an  equation  of  infiltration.  Water
               Resources Research 10 (4), 795-800.

SEE ALSO

        r.fill.dir, r.mapcalc, r.topidx
       How to run r.topmodel

AUTHORS

       Huidae Cho, Hydro Laboratory, Kyungpook National University, South Korea

       Based on TMOD9502.FOR by Keith Beven.

SOURCE CODE

       Available at: r.topmodel source code (history)

       Accessed: Monday Apr 01 03:08:05 2024

       Main index | Raster index | Topics index | Keywords index | Graphical index | Full index

       © 2003-2024 GRASS Development Team, GRASS GIS 8.3.2 Reference Manual

GRASS 8.3.2                                                                                   r.topmodel(1grass)