Provided by: grass-doc_8.3.2-1ubuntu2_all bug

NAME

       i.landsat.toar   -  Calculates  top-of-atmosphere  radiance  or  reflectance  and temperature for Landsat
       MSS/TM/ETM+/OLI

KEYWORDS

       imagery, radiometric conversion, radiance, reflectance, brightness temperature,  atmospheric  correction,
       satellite, Landsat

SYNOPSIS

       i.landsat.toar
       i.landsat.toar --help
       i.landsat.toar  [-rnp] input=basename output=basename  [metfile=name]   [sensor=string]   [method=string]
       [date=yyyy-mm-dd]   [sun_elevation=float]   [product_date=yyyy-mm-dd]    [gain=string]    [percent=float]
       [pixel=integer]     [rayleigh=float]     [lsatmet=string[,string,...]]     [scale=float]    [--overwrite]
       [--help]  [--verbose]  [--quiet]  [--ui]

   Flags:
       -r
           Output at-sensor radiance instead of reflectance for all bands

       -n
           Input raster maps use as extension the number of the band instead the code

       -p
           Print output metadata info

       --overwrite
           Allow output files to overwrite existing files

       --help
           Print usage summary

       --verbose
           Verbose module output

       --quiet
           Quiet module output

       --ui
           Force launching GUI dialog

   Parameters:
       input=basename [required]
           Base name of input raster bands
           Example: ’B.’ for B.1, B.2, ...

       output=basename [required]
           Prefix for output raster maps
           Example: ’B.toar.’ generates B.toar.1, B.toar.2, ...

       metfile=name
           Name of Landsat metadata file (.met or MTL.txt)

       sensor=string
           Spacecraft sensor
           Required only if ’metfile’ not given (recommended for sanity)
           Options: mss1, mss2, mss3, mss4, mss5, tm4, tm5, tm7, oli8
           mss1: Landsat-1 MSS
           mss2: Landsat-2 MSS
           mss3: Landsat-3 MSS
           mss4: Landsat-4 MSS
           mss5: Landsat-5 MSS
           tm4: Landsat-4 TM
           tm5: Landsat-5 TM
           tm7: Landsat-7 ETM+
           oli8: Landsat_8 OLI/TIRS

       method=string
           Atmospheric correction method
           Options: uncorrected, dos1, dos2, dos2b, dos3, dos4
           Default: uncorrected

       date=yyyy-mm-dd
           Image acquisition date (yyyy-mm-dd)
           Required only if ’metfile’ not given

       sun_elevation=float
           Sun elevation in degrees
           Required only if ’metfile’ not given

       product_date=yyyy-mm-dd
           Image creation date (yyyy-mm-dd)
           Required only if ’metfile’ not given

       gain=string
           Gain (H/L) of all Landsat ETM+ bands (1-5,61,62,7,8)
           Required only if ’metfile’ not given

       percent=float
           Percent of solar radiance in path radiance
           Required only if ’method’ is any DOS
           Default: 0.01

       pixel=integer
           Minimum pixels to consider digital number as dark object
           Required only if ’method’ is any DOS
           Default: 1000

       rayleigh=float
           Rayleigh atmosphere (diffuse sky irradiance)
           Required only if ’method’ is DOS3
           Default: 0.0

       lsatmet=string[,string,...]
           return value stored for a given metadata
           Required only if ’metfile’ and -p given
           Options: number, creation, date, sun_elev, sensor, bands, sunaz, time
           number: Landsat Number
           creation: Creation timestamp
           date: Date
           sun_elev: Sun Elevation
           sensor: Sensor
           bands: Bands count
           sunaz: Sun Azimuth Angle
           time: Time

       scale=float
           Scale factor for output
           Default: 1.0

DESCRIPTION

       i.landsat.toar is used to transform  the  calibrated  digital  number  of  Landsat  imagery  products  to
       top-of-atmosphere radiance or top-of-atmosphere reflectance and temperature (band 6 of the sensors TM and
       ETM+).  Optionally,  it  can be used to calculate the at-surface radiance or reflectance with atmospheric
       correction (DOS method).

       Usually, to do so the production date,  the  acquisition  date,  and  the  solar  elevation  are  needed.
       Moreover, for Landsat-7 ETM+ it is also needed the gain (high or low) of the nine respective bands.

       Optionally  (recommended), the data can be read from metadata file (.met or MTL.txt) for all Landsat MSS,
       TM, ETM+ and OLI/TIRS. However, if the solar elevation is  given  the  value  of  the  metadata  file  is
       overwritten.  This  is  necessary  when  the data in the .met file is incorrect or not accurate. Also, if
       acquisition or production dates are not found in the metadata file then the command line values are used.

       Attention: Any null value or smaller than QCALmin in the input raster is set to null in the output raster
       and it is not included in the equations.

       Attention: This module does not respect the current  region  settings,  in  order  to  have  the  largest
       possible  sample of pixels from where to get the darkest one of the scene and perform the DOS correction.
       To limit the results to a custom region, the user is advised  to  clip  the  results  (with  r.clip,  for
       instance)  or  to  define  the region first, import the images with region cropping, and then running the
       module.

Uncorrected at-sensor values (method=uncorrected, default)

       The standard geometric and radiometric corrections result in a calibrated  digital  number  (QCAL  =  DN)
       images.  To  further standardize the impact of illumination geometry, the QCAL images are first converted
       first to at-sensor radiance and then to at-sensor reflectance. The thermal band is first  converted  from
       QCAL to at-sensor radiance, and then to effective at-sensor temperature in Kelvin degrees.

       Radiometric  calibration  converts QCAL to at-sensor radiance, a radiometric quantity measured in W/(m² *
       sr * µm) using the equations:

           •   gain = (Lmax - Lmin) / (QCALmax - QCALmin)

           •   bias = Lmin - gain * QCALmin

           •   radiance = gain * QCAL + bias
       where, Lmax and Lmin are the calibration constants, and QCALmax and  QCALmin  are  the  highest  and  the
       lowest points of the range of rescaled radiance in QCAL.

       Then, to calculate at-sensor reflectance the equations are:

           •   sun_radiance = [Esun * sin(e)] / (PI * d^2)

           •   reflectance = radiance / sun_radiance
       where, d is the earth-sun distance in astronomical units, e is the solar elevation angle, and Esun is the
       mean solar exoatmospheric irradiance in W/(m² * µm).

Simplified at-surface values (method=dos[1-4])

       Atmospheric  correction  and  reflectance calibration remove the path radiance, i.e. the stray light from
       the atmosphere, and the spectral effect of solar illumination. To output these simple at-surface radiance
       and at-surface reflectance, the equations are (not for thermal bands):

           •   sun_radiance = TAUv * [Esun * sin(e) * TAUz + Esky] / (PI * d^2)

           •   radiance_path = radiance_dark - percent * sun_radiance

           •   radiance = (at-sensor_radiance - radiance_path)

           •   reflectance = radiance / sun_radiance
       where, percent is a value between 0.0 and 1.0 (usually 0.01), Esky is the diffuse sky irradiance, TAUz is
       the atmospheric transmittance along the path from the  sun  to  the  ground  surface,  and  TAUv  is  the
       atmospheric  transmittance  along  the  path  from the ground surface to the sensor. radiance_dark is the
       at-sensor radiance calculated from the darkest object, i.e. DN with  a  least  ’dark_parameter’  (usually
       1000) pixels for the entire image.  The values are,

           •   DOS1: TAUv = 1.0, TAUz = 1.0 and Esky = 0.0

           •   DOS2:  TAUv = 1.0, Esky = 0.0, and TAUz = sin(e) for all bands with maximum wave length less than
               1. (i.e. bands 4-6 MSS, 1-4 TM, and 1-4 ETM+) other bands TAUz = 1.0

           •   DOS3: TAUv = exp[-t/cos(sat_zenith)], TAUz = exp[-t/sin(e)], Esky = rayleigh

           •   DOS4: TAUv = exp[-t/cos(sat_zenith)], TAUz = exp[-t/sin(e)], Esky = PI * radiance_dark
       Attention: Output radiance remain untouched (i.e. no set to 0.0  when  it  is  negative)  then  they  are
       possible negative values. However, output reflectance is set to 0.0 when is obtained a negative value.

NOTES

       The  output  raster cell values can be rescaled with the scale parameter (e.g., with 100 in case of using
       reflectance output in i.gensigset).

   On Landsat-8 metadata file
       NASA reports a structure of the L1G Metadata file (LDCM-DFCB-004.pdf) for Landsat Data Continuity Mission
       (i.e. Landsat-8).

       NASA retains in MIN_MAX_RADIANCE group the necessary information to transform  Digital  Numbers  (DN)  in
       radiance values. Then, i.landsat.toar replaces the possible standard values with the metadata values. The
       results match with the values reported by the metada file in RADIOMETRIC_RESCALING group.

       Also,  NASA  reports  the  same  values  of  reflectance for all bands in max-min values and in gain-bias
       values. This is strange that all bands have the same range of reflectance. Also, they wrote  in  the  web
       page  as  to  calculate  reflectance directly from DN, first with RADIOMETRIC_RESCALING values and second
       divided by sin(sun_elevation).

       This is a simple rescaling

           •   reflectance = radiance / sun_radiance = (DN * RADIANCE_MULT + RADIANCE_ADD) / sun_radiance

           •   now reflectance = DN * REFLECTANCE_MULT + REFLECTANCE_ADD

           •   then REFLECTANCE_MULT = RADIANCE_MULT / sun_radiance

           •   and REFLECTANCE_ADD = RADIANCE_ADD / sun_radiance

       The problem arises when we need ESUN values (not provided) to compute sun_radiance  and  DOS.  We  assume
       that REFLECTANCE_MAXIMUM corresponds to the RADIANCE_MAXIMUM, then

           •   REFLECTANCE_MAXIMUM / sin(e) = RADIANCE_MAXIMUM / sun_radiance

           •   Esun = (PI * d^2) * RADIANCE_MAXIMUM / REFLECTANCE_MAXIMUM
       where d is the earth-sun distance provided by metadata file or computed inside the program.

       The  i.landsat.toar  reverts  back  the  NASA  rescaling to continue using Lmax, Lmin, and Esun values to
       compute the constant to convert DN to  radiance  and  radiance  to  reflectance  with  the  "traditional"
       equations  and  simple  atmospheric  corrections.   Attention:  When  MAXIMUM  values  are  not provided,
       i.landsat.toar tries to calculate Lmax, Lmin, and Esun from RADIOMETRIC_RESCALING (in tests  the  results
       were the same).

   Calibration constants
       In  verbose  mode (flag --verbose), the program write basic satellite data and the parameters used in the
       transformations.

       Production date is not an exact value but it is necessary to apply correct calibration  constants,  which
       were changed in the dates:

           •   Landsat-1 MSS: never

           •   Landsat-2 MSS: July 16, 1975

           •   Landsat-3 MSS: June 1, 1978

           •   Landsat-4 MSS: August 26, 1982 and April 1, 1983

           •   Landsat-4 TM:  August 1, 1983 and January 15, 1984

           •   Landsat-5 MSS: April 6, 1984 and November 9, 1984

           •   Landsat-5 TM:  May 4, 2003 and April, 2 2007

           •   Landsat-7 ETM+: July 1, 2000

           •   Landsat-8 OLI/TIRS: launched in 2013

EXAMPLES

   Metadata file examples
       Transform  digital  numbers  of  Landsat-7  ETM+  in band rasters 203_30.1, 203_30.2 [...] to uncorrected
       at-sensor reflectance in output files 203_30.1_toar, 203_30.2_toar [...]  and  at-sensor  temperature  in
       output files 293_39.61_toar and 293_39.62_toar:
       i.landsat.toar input=203_30. output=_toar \
         metfile=p203r030_7x20010620.met
       or
       i.landsat.toar input=L5121060_06020060714. \
         output=L5121060_06020060714_toar \
         metfile=L5121060_06020060714_MTL.txt
       or
       i.landsat.toar input=LC80160352013134LGN03_B output=toar \
         metfile=LC80160352013134LGN03_MTL.txt sensor=oli8 date=2013-05-14

   DOS1 example
       DN to reflectance using DOS1:
       # rename channels or make a copy to match i.landsat.toar’s input scheme:
       g.copy raster=lsat7_2002_10,lsat7_2002.1
       g.copy raster=lsat7_2002_20,lsat7_2002.2
       g.copy raster=lsat7_2002_30,lsat7_2002.3
       g.copy raster=lsat7_2002_40,lsat7_2002.4
       g.copy raster=lsat7_2002_50,lsat7_2002.5
       g.copy raster=lsat7_2002_61,lsat7_2002.61
       g.copy raster=lsat7_2002_62,lsat7_2002.62
       g.copy raster=lsat7_2002_70,lsat7_2002.7
       g.copy raster=lsat7_2002_80,lsat7_2002.8
       Calculation of reflectance values from DN using DOS1 (metadata obtained from p016r035_7x20020524.met.gz):
       i.landsat.toar input=lsat7_2002. output=lsat7_2002_toar. sensor=tm7 \
         method=dos1 date=2002-05-24 sun_elevation=64.7730999 \
         product_date=2004-02-12 gain=HHHLHLHHL
       The resulting Landsat channels are named lsat7_2002_toar.1 .. lsat7_2002_toar.8.

REFERENCES

           •   Chander G., B.L. Markham and D.L. Helder, 2009: Remote Sensing of Environment, vol. 113

           •   Chander  G.H.  and B. Markham, 2003: IEEE Transactions On Geoscience And Remote Sensing, vol. 41,
               no. 11.

           •   Chavez  P.S.,  jr.  1996:  Image-based  atmospheric  corrections  -   Revisited   and   Improved.
               Photogrammetric Engineering and Remote Sensing 62(9): 1025-1036.

           •   Huang  et  al:  At-Satellite  Reflectance,  2002:  A  First Order Normalization Of Landsat 7 ETM+
               Images.

           •   R. Irish: Landsat 7. Science Data Users Handbook. February 17, 2007; 15 May 2011.

           •   Markham B.L. and  J.L.  Barker,  1986:  Landsat  MSS  and  TM  Post-Calibration  Dynamic  Ranges,
               Exoatmospheric Reflectances and At-Satellite Temperatures. EOSAT Landsat Technical Notes, No. 1.

           •   Moran M.S., R.D. Jackson, P.N. Slater and P.M. Teillet, 1992: Remote Sensing of Environment, vol.
               41.

           •   Song  et  al,  2001:  Classification  and Change Detection Using Landsat TM Data, When and How to
               Correct Atmospheric Effects? Remote Sensing of Environment, vol. 75.

SEE ALSO

        i.atcorr, i.colors.enhance, r.mapcalc, r.in.gdal

       Landsat Data Dictionary by USGS

AUTHOR

       E. Jorge Tizado  (ej.tizado unileon es), Dept. Biodiversity and Environmental Management,  University  of
       León, Spain

SOURCE CODE

       Available at: i.landsat.toar source code (history)

       Accessed: Monday Apr 01 03:09:12 2024

       Main index | Imagery index | Topics index | Keywords index | Graphical index | Full index

       © 2003-2024 GRASS Development Team, GRASS GIS 8.3.2 Reference Manual

GRASS 8.3.2                                                                               i.landsat.toar(1grass)