Provided by: python3-bioblend_1.2.0-2_all bug

NAME

       bioblend - BioBlend Documentation

ABOUT

       BioBlend is a Python library for interacting with the Galaxy API.

       BioBlend is supported and tested on:

       • Python 3.7 - 3.11

       • Galaxy release 19.05 and later.

       BioBlend's  goal  is  to  make  it  easier  to  script  and  automate  the running of Galaxy analyses and
       administering of a Galaxy server.  In practice, it makes it possible to do things like this:

       • Interact with Galaxy via a straightforward API:

            from bioblend.galaxy import GalaxyInstance
            gi = GalaxyInstance('<Galaxy IP>', key='your API key')
            libs = gi.libraries.get_libraries()
            gi.workflows.show_workflow('workflow ID')
            wf_invocation = gi.workflows.invoke_workflow('workflow ID', inputs)

       • Interact with Galaxy via an object-oriented API:

            from bioblend.galaxy.objects import GalaxyInstance
            gi = GalaxyInstance("URL", "API_KEY")
            wf = gi.workflows.list()[0]
            hist = gi.histories.list()[0]
            inputs = hist.get_datasets()[:2]
            input_map = dict(zip(wf.input_labels, inputs))
            params = {"Paste1": {"delimiter": "U"}}
            wf_invocation = wf.invoke(input_map, params=params)

   About the library name
       The library was originally called just Blend but we renamed it to reflect more of its domain and  a  make
       it  bit  more  unique  so  it  can  be  easier  to  find.   The  name was intended to be short and easily
       pronounceable. In its original implementation, the goal was to provide a lot more  support  for  CloudMan
       and  other  integration  capabilities, allowing them to be blended together via code. BioBlend fitted the
       bill.

INSTALLATION

       Stable releases of BioBlend are best installed via pip from PyPI:

          $ python3 -m pip install bioblend

       Alternatively, the most current source code from our Git repository can be installed with:

          $ python3 -m pip install git+https://github.com/galaxyproject/bioblend

       After installing the library, you will be able to simply import it  into  your  Python  environment  with
       import bioblend. For details on the available functionality, see the API documentation.

       BioBlend requires a number of Python libraries. These libraries are installed automatically when BioBlend
       itself  is  installed, regardless whether it is installed via PyPi or by running python3 setup.py install
       command. The current list of required libraries is always available from  setup.py  in  the  source  code
       repository.

       If you also want to run tests locally, some extra libraries are required. To install them, run:

          $ python3 setup.py test

USAGE

       To get started using BioBlend, install the library as described above. Once the library becomes available
       on  the  given  system,  it can be developed against.  The developed scripts do not need to reside in any
       particular location on the system.

       It is probably best to take a look at the example scripts in docs/examples source  directory  and  browse
       the API documentation. Beyond that, it's up to your creativity :).

DEVELOPMENT

       Anyone interested in contributing or tweaking the library is more then welcome to do so. To start, simply
       fork the Git repository on Github and start playing with it. Then, issue pull requests.

API DOCUMENTATION

       BioBlend's  API  focuses  around and matches the services it wraps. Thus, there are two top-level sets of
       APIs, each corresponding to a separate service and a corresponding step in the automation  process.  Note
       that each of the service APIs can be used completely independently of one another.

       Effort  has  been  made to keep the structure and naming of those API's consistent across the library but
       because they do bridge different services, some discrepancies may exist. Feel free  to  point  those  out
       and/or provide fixes.

       For Galaxy, an alternative object-oriented API is also available.  This API provides an explicit modeling
       of  server-side  Galaxy  instances  and  their  relationships,  providing higher-level methods to perform
       operations such as retrieving all datasets for a given history, etc.  Note that, at the  moment,  the  oo
       API  is still incomplete, providing access to a more restricted set of Galaxy modules with respect to the
       standard one.

   Galaxy API
       API used to manipulate genomic analyses within Galaxy, including data management and workflow execution.

   API documentation for interacting with Galaxy
   GalaxyInstance
                                                         ----

   Config
       Contains possible interaction dealing with Galaxy configuration.

       class bioblend.galaxy.config.ConfigClient(galaxy_instance: GalaxyInstance)
              A generic Client interface defining the common fields.

              All clients must define the following field (which will be used as part  of  the  URL  composition
              (e.g.,   http://<galaxy_instance>/api/libraries):   self.module  =  'workflows'  |  'libraries'  |
              'histories' | ...

              get_config() -> dict
                     Get a list of attributes about the Galaxy instance. More attributes will be present if  the
                     user is an admin.

                     Return type
                            list

                     Returns
                            A list of attributes.  For example:

                               {'allow_library_path_paste': False,
                                'allow_user_creation': True,
                                'allow_user_dataset_purge': True,
                                'allow_user_deletion': False,
                                'enable_unique_workflow_defaults': False,
                                'ftp_upload_dir': '/SOMEWHERE/galaxy/ftp_dir',
                                'ftp_upload_site': 'galaxy.com',
                                'library_import_dir': 'None',
                                'logo_url': None,
                                'support_url': 'https://galaxyproject.org/support',
                                'terms_url': None,
                                'user_library_import_dir': None,
                                'wiki_url': 'https://galaxyproject.org/'}

              get_version() -> dict
                     Get the current version of the Galaxy instance.

                     Return type
                            dict

                     Returns
                            Version of the Galaxy instance For example:

                               {'extra': {}, 'version_major': '17.01'}

              module: str = 'configuration'

              reload_toolbox() -> None
                     Reload the Galaxy toolbox (but not individual tools)

                     Return type
                            None

                     Returns
                            None

              whoami() -> dict
                     Return information about the current authenticated user.

                     Return type
                            dict

                     Returns
                            Information about current authenticated user For example:

                               {'active': True,
                                'deleted': False,
                                'email': 'user@example.org',
                                'id': '4aaaaa85aacc9caa',
                                'last_password_change': '2021-07-29T05:34:54.632345',
                                'model_class': 'User',
                                'username': 'julia'}

                                                         ----

   Datasets
       Contains possible interactions with the Galaxy Datasets

       class bioblend.galaxy.datasets.DatasetClient(galaxy_instance: GalaxyInstance)
              A generic Client interface defining the common fields.

              All  clients  must  define  the following field (which will be used as part of the URL composition
              (e.g.,  http://<galaxy_instance>/api/libraries):  self.module  =  'workflows'  |   'libraries'   |
              'histories' | ...

              download_dataset(dataset_id: str, file_path: None = None, use_default_filename: bool = True,
              require_ok_state: bool = True, maxwait: float = 12000) -> bytes

              download_dataset(dataset_id: str, file_path: str, use_default_filename: bool = True,
              require_ok_state: bool = True, maxwait: float = 12000) -> str
                     Download  a  dataset  to  file  or  in  memory.  If  the  dataset  state  is  not  'ok',  a
                     DatasetStateException will be thrown, unless require_ok_state=False.

                     Parametersdataset_id (str) -- Encoded dataset ID

                            • file_path (str) -- If this argument is provided, the dataset will be  streamed  to
                              disk  at  that  path (should be a directory if use_default_filename=True).  If the
                              file_path argument is not provided, the dataset content is loaded into memory  and
                              returned by the method (Memory consumption may be heavy as the entire file will be
                              in memory).

                            • use_default_filename  (bool)  --  If  True,  the  exported  file  will be saved as
                              file_path/%s, where %s is the dataset name.  If False,  file_path  is  assumed  to
                              contain the full file path including the filename.

                            • require_ok_state (bool) -- If False, datasets will be downloaded even if not in an
                              'ok'    state,    issuing    a   DatasetStateWarning   rather   than   raising   a
                              DatasetStateException.

                            • maxwait (float) -- Total time (in seconds) to wait for the dataset state to become
                              terminal.  If  the  dataset  state  is  not   terminal   within   this   time,   a
                              DatasetTimeoutException will be thrown.

                     Return type
                            bytes or str

                     Returns
                            If a file_path argument is not provided, returns the file content. Otherwise returns
                            the local path of the downloaded file.

              get_datasets(limit: int = 500, offset: int = 0, name: str | None = None, extension: str |
              List[str] | None = None, state: str | List[str] | None = None, visible: bool | None = None,
              deleted: bool | None = None, purged: bool | None = None, tool_id: str | None = None, tag: str |
              None = None, history_id: str | None = None, create_time_min: str | None = None, create_time_max:
              str | None = None, update_time_min: str | None = None, update_time_max: str | None = None, order:
              str = 'create_time-dsc') -> List[Dict[str, Any]]
                     Get  the  latest  datasets,  or  select another subset by specifying optional arguments for
                     filtering (e.g. a history ID).

                     Since the number of datasets may be very large, limit and offset parameters are required to
                     specify the desired range.

                     If the user is an admin, this will return datasets for all the users,  otherwise  only  for
                     the current user.

                     Parameterslimit (int) -- Maximum number of datasets to return.

                            • offset  (int)  --  Return  datasets  starting  from  this specified position.  For
                              example, if limit is set to 100 and  offset  to  200,  datasets  200-299  will  be
                              returned.

                            • name (str) -- Dataset name to filter on.

                            • extension  (str  or  list  of str) -- Dataset extension (or list of extensions) to
                              filter on.

                            • state (str or list of str) -- Dataset state (or list of states) to filter on.

                            • visible (bool) -- Optionally filter datasets by their visible attribute.

                            • deleted (bool) -- Optionally filter datasets by their deleted attribute.

                            • purged (bool) -- Optionally filter datasets by their purged attribute.

                            • tool_id (str) -- Tool ID to filter on.

                            • tag (str) -- Dataset tag to filter on.

                            • history_id (str) -- Encoded history ID to filter on.

                            • create_time_min (str) -- Show only datasets created after the  provided  time  and
                              date, which should be formatted as YYYY-MM-DDTHH-MM-SS.

                            • create_time_max  (str)  -- Show only datasets created before the provided time and
                              date, which should be formatted as YYYY-MM-DDTHH-MM-SS.

                            • update_time_min (str) -- Show only datasets last updated after the  provided  time
                              and date, which should be formatted as YYYY-MM-DDTHH-MM-SS.

                            • update_time_max  (str) -- Show only datasets last updated before the provided time
                              and date, which should be formatted as YYYY-MM-DDTHH-MM-SS.

                            • order (str) -- One or more of the  following  attributes  for  ordering  datasets:
                              create_time  (default), extension, hid, history_id, name, update_time. Optionally,
                              -asc or -dsc  (default)  can  be  appended  for  ascending  and  descending  order
                              respectively.  Multiple  attributes  can  be  stacked as a comma-separated list of
                              values, e.g. create_time-asc,hid-dsc.

                     Return type
                            list

                     Param  A list of datasets

              gi: GalaxyInstance

              module: str = 'datasets'

              publish_dataset(dataset_id: str, published: bool = False) -> Dict[str, Any]
                     Make a dataset publicly available or private.  For  more  fine-grained  control  (assigning
                     different permissions to specific roles), use the update_permissions() method.

                     Parametersdataset_id (str) -- dataset ID

                            • published  (bool)  --  Whether  to  make  the  dataset published (True) or private
                              (False).

                     Return type
                            dict

                     Returns
                            Details of the updated dataset

                     NOTE:
                        This method works only on Galaxy 19.05 or later.

              show_dataset(dataset_id: str, deleted: bool = False, hda_ldda: Literal['hda', 'ldda'] = 'hda') ->
              Dict[str, Any]
                     Get details about a given dataset. This can be a history or a library dataset.

                     Parametersdataset_id (str) -- Encoded dataset ID

                            • deleted (bool) -- Whether to return results for a deleted dataset

                            • hda_ldda (str) -- Whether to show a history  dataset  ('hda'  -  the  default)  or
                              library dataset ('ldda').

                     Return type
                            dict

                     Returns
                            Information about the HDA or LDDA

              update_permissions(dataset_id: str, access_ids: list | None = None, manage_ids: list | None =
              None, modify_ids: list | None = None) -> dict
                     Set access, manage or modify permissions for a dataset to a list of roles.

                     Parametersdataset_id (str) -- dataset ID

                            • access_ids  (list)  --  role  IDs  which  should  have  access permissions for the
                              dataset.

                            • manage_ids (list) -- role  IDs  which  should  have  manage  permissions  for  the
                              dataset.

                            • modify_ids  (list)  --  role  IDs  which  should  have  modify permissions for the
                              dataset.

                     Return type
                            dict

                     Returns
                            Current roles for all available permission types.

                     NOTE:
                        This method works only on Galaxy 19.05 or later.

              wait_for_dataset(dataset_id: str, maxwait: float = 12000, interval: float = 3, check: bool = True)
              -> Dict[str, Any]
                     Wait until a dataset is in a terminal state.

                     Parametersdataset_id (str) -- dataset ID

                            • maxwait (float) -- Total time (in seconds) to wait for the dataset state to become
                              terminal.  If  the  dataset  state  is  not   terminal   within   this   time,   a
                              DatasetTimeoutException will be raised.

                            • interval (float) -- Time (in seconds) to wait between 2 consecutive checks.

                            • check (bool) -- Whether to check if the dataset terminal state is 'ok'.

                     Return type
                            dict

                     Returns
                            Details of the given dataset.

       exception bioblend.galaxy.datasets.DatasetStateException

       exception bioblend.galaxy.datasets.DatasetStateWarning

       exception bioblend.galaxy.datasets.DatasetTimeoutException

                                                         ----

   Dataset collections
       class bioblend.galaxy.dataset_collections.CollectionDescription(name: str, type: str = 'list', elements:
       List[CollectionElement | SimpleElement] | Dict[str, Any] | None = None)

              to_dict() -> Dict[str, str | List]

       class bioblend.galaxy.dataset_collections.CollectionElement(name: str, type: str = 'list', elements:
       List[CollectionElement | SimpleElement] | Dict[str, Any] | None = None)

              to_dict() -> Dict[str, str | List]

       class bioblend.galaxy.dataset_collections.DatasetCollectionClient(galaxy_instance: GalaxyInstance)
              A generic Client interface defining the common fields.

              All  clients  must  define  the following field (which will be used as part of the URL composition
              (e.g.,  http://<galaxy_instance>/api/libraries):  self.module  =  'workflows'  |   'libraries'   |
              'histories' | ...

              download_dataset_collection(dataset_collection_id: str, file_path: str) -> Dict[str, Any]
                     Download a history dataset collection as an archive.

                     Parametersdataset_collection_id (str) -- Encoded dataset collection ID

                            • file_path (str) -- The path to which the archive will be downloaded

                     Return type
                            dict

                     Returns
                            Information about the downloaded archive.

                     NOTE:
                        This method downloads a zip archive for Galaxy 21.01 and later.  For earlier versions of
                        Galaxy this method downloads a tgz archive.

              gi: GalaxyInstance

              module: str = 'dataset_collections'

              show_dataset_collection(dataset_collection_id: str, instance_type: str = 'history') -> Dict[str,
              Any]
                     Get details of a given dataset collection of the current user

                     Parametersdataset_collection_id (str) -- dataset collection ID

                            • instance_type (str) -- instance type of the collection - 'history' or 'library'

                     Return type
                            dict

                     Returns
                            element view of the dataset collection

              wait_for_dataset_collection(dataset_collection_id: str, maxwait: float = 12000, interval: float =
              3, proportion_complete: float = 1.0, check: bool = True) -> Dict[str, Any]
                     Wait  until  all  or  a  specified  proportion of elements of a dataset collection are in a
                     terminal state.

                     Parametersdataset_collection_id (str) -- dataset collection ID

                            • maxwait (float) -- Total time (in seconds) to wait for the dataset states  in  the
                              dataset collection to become terminal. If not all datasets are in a terminal state
                              within this time, a DatasetCollectionTimeoutException will be raised.

                            • interval (float) -- Time (in seconds) to wait between two consecutive checks.

                            • proportion_complete (float) -- Proportion of elements in this collection that have
                              to  be  in  a terminal state for this method to return. Must be a number between 0
                              and  1.  For  example:  if  the  dataset  collection  contains  2  elements,   and
                              proportion_complete=0.5 is specified, then wait_for_dataset_collection will return
                              as  soon  as  1  of  the 2 datasets is in a terminal state. Default is 1, i.e. all
                              elements must complete.

                            • check (bool) -- Whether to check if all the terminal states  of  datasets  in  the
                              dataset  collection  are  'ok'.  This will raise an Exception if a dataset is in a
                              terminal state other than 'ok'.

                     Return type
                            dict

                     Returns
                            Details of the given dataset collection.

       class bioblend.galaxy.dataset_collections.HistoryDatasetCollectionElement(name: str, id: str)

       class bioblend.galaxy.dataset_collections.HistoryDatasetElement(name: str, id: str)

       class bioblend.galaxy.dataset_collections.LibraryDatasetElement(name: str, id: str)

                                                         ----

   Datatypes
       Contains possible interactions with the Galaxy Datatype

       class bioblend.galaxy.datatypes.DatatypesClient(galaxy_instance: GalaxyInstance)
              A generic Client interface defining the common fields.

              All clients must define the following field (which will be used as part  of  the  URL  composition
              (e.g.,   http://<galaxy_instance>/api/libraries):   self.module  =  'workflows'  |  'libraries'  |
              'histories' | ...

              get_datatypes(extension_only: bool = False, upload_only: bool = False) -> List[str]
                     Get the list of all installed datatypes.

                     Parametersextension_only (bool) -- Return only the extension rather than the datatype name

                            • upload_only (bool) -- Whether to return only datatypes which can be uploaded

                     Return type
                            list

                     Returns
                            A list of datatype names.  For example:

                               ['snpmatrix',
                                'snptest',
                                'tabular',
                                'taxonomy',
                                'twobit',
                                'txt',
                                'vcf',
                                'wig',
                                'xgmml',
                                'xml']

              get_sniffers() -> List[str]
                     Get the list of all installed sniffers.

                     Return type
                            list

                     Returns
                            A list of sniffer names.  For example:

                               ['galaxy.datatypes.tabular:Vcf',
                                'galaxy.datatypes.binary:TwoBit',
                                'galaxy.datatypes.binary:Bam',
                                'galaxy.datatypes.binary:Sff',
                                'galaxy.datatypes.xml:Phyloxml',
                                'galaxy.datatypes.xml:GenericXml',
                                'galaxy.datatypes.sequence:Maf',
                                'galaxy.datatypes.sequence:Lav',
                                'galaxy.datatypes.sequence:csFasta']

              module: str = 'datatypes'

                                                         ----

   Folders
       Contains possible interactions with the Galaxy library folders

       class bioblend.galaxy.folders.FoldersClient(galaxy_instance: GalaxyInstance)
              A generic Client interface defining the common fields.

              All clients must define the following field (which will be used as part  of  the  URL  composition
              (e.g.,   http://<galaxy_instance>/api/libraries):   self.module  =  'workflows'  |  'libraries'  |
              'histories' | ...

              create_folder(parent_folder_id: str, name: str, description: str | None = None) -> Dict[str, Any]
                     Create a folder.

                     Parametersparent_folder_id (str) -- Folder's description

                            • name (str) -- name of the new folder

                            • description (str) -- folder's description

                     Return type
                            dict

                     Returns
                            details of the updated folder

              delete_folder(folder_id: str, undelete: bool = False) -> Dict[str, Any]
                     Marks the folder with the given id as deleted (or removes the deleted mark if the  undelete
                     param is True).

                     Parametersfolder_id (str) -- the folder's encoded id, prefixed by 'F'

                            • undelete  (bool) -- If set to True, the folder will be undeleted (i.e. the deleted
                              mark will be removed)

                     Returns
                            detailed folder information

                     Return type
                            dict

              get_permissions(folder_id: str, scope: Literal['current', 'available'] = 'current') -> Dict[str,
              Any]
                     Get the permissions of a folder.

                     Parametersfolder_id (str) -- the folder's encoded id, prefixed by 'F'

                            • scope (str) -- scope of permissions, either 'current' or 'available'

                     Return type
                            dict

                     Returns
                            dictionary including details of the folder permissions

              module: str = 'folders'

              set_permissions(folder_id: str, action: Literal['set_permissions'] = 'set_permissions', add_ids:
              List[str] | None = None, manage_ids: List[str] | None = None, modify_ids: List[str] | None = None)
              -> Dict[str, Any]
                     Set the permissions of a folder.

                     Parametersfolder_id (str) -- the folder's encoded id, prefixed by 'F'

                            • action (str) -- action to execute, only "set_permissions" is supported.

                            • add_ids (list of str) -- list of role IDs which can add datasets to the folder

                            • manage_ids (list of str) -- list of role IDs which  can  manage  datasets  in  the
                              folder

                            • modify_ids  (list  of  str)  --  list of role IDs which can modify datasets in the
                              folder

                     Return type
                            dict

                     Returns
                            dictionary including details of the folder

              show_folder(folder_id: str, contents: bool = False) -> Dict[str, Any]
                     Display information about a folder.

                     Parametersfolder_id (str) -- the folder's encoded id, prefixed by 'F'

                            • contents (bool) -- True to get the contents of the folder, rather  than  just  the
                              folder details.

                     Return type
                            dict

                     Returns
                            dictionary including details of the folder

              update_folder(folder_id: str, name: str, description: str | None = None) -> Dict[str, Any]
                     Update folder information.

                     Parametersfolder_id (str) -- the folder's encoded id, prefixed by 'F'

                            • name (str) -- name of the new folder

                            • description (str) -- folder's description

                     Return type
                            dict

                     Returns
                            details of the updated folder

                                                         ----

   Forms
       Contains possible interactions with the Galaxy Forms

       class bioblend.galaxy.forms.FormsClient(galaxy_instance: GalaxyInstance)
              A generic Client interface defining the common fields.

              All  clients  must  define  the following field (which will be used as part of the URL composition
              (e.g.,  http://<galaxy_instance>/api/libraries):  self.module  =  'workflows'  |   'libraries'   |
              'histories' | ...

              create_form(form_xml_text: str) -> List[Dict[str, Any]]
                     Create a new form.

                     Parameters
                            form_xml_text (str) -- Form xml to create a form on galaxy instance

                     Return type
                            list of dicts

                     Returns
                            List with a single dictionary describing the created form

              get_forms() -> List[Dict[str, Any]]
                     Get the list of all forms.

                     Return type
                            list

                     Returns
                            Displays a collection (list) of forms.  For example:

                               [{'id': 'f2db41e1fa331b3e',
                                 'model_class': 'FormDefinition',
                                 'name': 'First form',
                                 'url': '/api/forms/f2db41e1fa331b3e'},
                                {'id': 'ebfb8f50c6abde6d',
                                 'model_class': 'FormDefinition',
                                 'name': 'second form',
                                 'url': '/api/forms/ebfb8f50c6abde6d'}]

              module: str = 'forms'

              show_form(form_id: str) -> Dict[str, Any]
                     Get details of a given form.

                     Parameters
                            form_id (str) -- Encoded form ID

                     Return type
                            dict

                     Returns
                            A description of the given form.  For example:

                               {'desc': 'here it is ',
                                'fields': [],
                                'form_definition_current_id': 'f2db41e1fa331b3e',
                                'id': 'f2db41e1fa331b3e',
                                'layout': [],
                                'model_class': 'FormDefinition',
                                'name': 'First form',
                                'url': '/api/forms/f2db41e1fa331b3e'}

                                                         ----

   FTP files
       Contains possible interactions with the Galaxy FTP Files

       class bioblend.galaxy.ftpfiles.FTPFilesClient(galaxy_instance: GalaxyInstance)
              A generic Client interface defining the common fields.

              All  clients  must  define  the following field (which will be used as part of the URL composition
              (e.g.,  http://<galaxy_instance>/api/libraries):  self.module  =  'workflows'  |   'libraries'   |
              'histories' | ...

              get_ftp_files(deleted: bool = False) -> List[dict]
                     Get a list of local files.

                     Parameters
                            deleted (bool) -- Whether to include deleted files

                     Return type
                            list

                     Returns
                            A list of dicts with details on individual files on FTP

              module: str = 'ftp_files'

                                                         ----

   Genomes
       Contains possible interactions with the Galaxy Histories

       class bioblend.galaxy.genomes.GenomeClient(galaxy_instance: GalaxyInstance)
              A generic Client interface defining the common fields.

              All  clients  must  define  the following field (which will be used as part of the URL composition
              (e.g.,  http://<galaxy_instance>/api/libraries):  self.module  =  'workflows'  |   'libraries'   |
              'histories' | ...

              get_genomes() -> list
                     Returns a list of installed genomes

                     Return type
                            list

                     Returns
                            List of installed genomes

              install_genome(func: Literal['download', 'index'] = 'download', source: str | None = None, dbkey:
              str | None = None, ncbi_name: str | None = None, ensembl_dbkey: str | None = None, url_dbkey: str
              | None = None, indexers: list | None = None) -> Dict[str, Any]
                     Download and/or index a genome.

                     Parametersfunc (str) -- Allowed values: 'download', Download and index; 'index', Index only

                            • source (str) -- Data source for this build. Can be: UCSC, Ensembl, NCBI, URL

                            • dbkey (str) -- DB key of the build to download, ignored unless 'UCSC' is specified
                              as the source

                            • ncbi_name  (str)  -- NCBI's genome identifier, ignored unless NCBI is specified as
                              the source

                            • ensembl_dbkey (str) -- Ensembl's genome  identifier,  ignored  unless  Ensembl  is
                              specified as the source

                            • url_dbkey  (str)  -- DB key to use for this build, ignored unless URL is specified
                              as the source

                            • indexers (list) -- POST array of indexers to run after downloading  (indexers[]  =
                              first, indexers[] = second, ...)

                     Return type
                            dict

                     Returns
                            dict(  status:  'ok', job: <job ID> ) If error: dict( status: 'error', error: <error
                            message> )

              module: str = 'genomes'

              show_genome(id: str, num: str | None = None, chrom: str | None = None, low: str | None = None,
              high: str | None = None) -> Dict[str, Any]
                     Returns information about build <id>

                     Parametersid (str) -- Genome build ID to use

                            • num (str) -- num

                            • chrom (str) -- chrom

                            • low (str) -- low

                            • high (str) -- high

                     Return type
                            dict

                     Returns
                            Information about the genome build

   Groups
       Contains possible interactions with the Galaxy Groups

       class bioblend.galaxy.groups.GroupsClient(galaxy_instance: GalaxyInstance)
              A generic Client interface defining the common fields.

              All clients must define the following field (which will be used as part  of  the  URL  composition
              (e.g.,   http://<galaxy_instance>/api/libraries):   self.module  =  'workflows'  |  'libraries'  |
              'histories' | ...

              add_group_role(group_id: str, role_id: str) -> Dict[str, Any]
                     Add a role to the given group.

                     Parametersgroup_id (str) -- Encoded group ID

                            • role_id (str) -- Encoded role ID to add to the group

                     Return type
                            dict

                     Returns
                            Added group role's info

              add_group_user(group_id: str, user_id: str) -> Dict[str, Any]
                     Add a user to the given group.

                     Parametersgroup_id (str) -- Encoded group ID

                            • user_id (str) -- Encoded user ID to add to the group

                     Return type
                            dict

                     Returns
                            Added group user's info

              create_group(group_name: str, user_ids: List[str] | None = None, role_ids: List[str] | None =
              None) -> List[Dict[str, Any]]
                     Create a new group.

                     Parametersgroup_name (str) -- A name for the new group

                            • user_ids (list) -- A list of encoded user IDs to add to the new group

                            • role_ids (list) -- A list of encoded role IDs to add to the new group

                     Return type
                            list

                     Returns
                            A (size 1) list with newly created group details, like:

                               [{'id': '7c9636938c3e83bf',
                                 'model_class': 'Group',
                                 'name': 'My Group Name',
                                 'url': '/api/groups/7c9636938c3e83bf'}]

              delete_group_role(group_id: str, role_id: str) -> Dict[str, Any]
                     Remove a role from the given group.

                     Parametersgroup_id (str) -- Encoded group ID

                            • role_id (str) -- Encoded role ID to remove from the group

                     Return type
                            dict

                     Returns
                            The role which was removed

              delete_group_user(group_id: str, user_id: str) -> Dict[str, Any]
                     Remove a user from the given group.

                     Parametersgroup_id (str) -- Encoded group ID

                            • user_id (str) -- Encoded user ID to remove from the group

                     Return type
                            dict

                     Returns
                            The user which was removed

              get_group_roles(group_id: str) -> List[Dict[str, Any]]
                     Get the list of roles associated to the given group.

                     Parameters
                            group_id (str) -- Encoded group ID

                     Return type
                            list of dicts

                     Returns
                            List of group roles' info

              get_group_users(group_id: str) -> List[Dict[str, Any]]
                     Get the list of users associated to the given group.

                     Parameters
                            group_id (str) -- Encoded group ID

                     Return type
                            list of dicts

                     Returns
                            List of group users' info

              get_groups() -> List[Dict[str, Any]]
                     Get all (not deleted) groups.

                     Return type
                            list

                     Returns
                            A list of dicts with details on individual groups.  For example:

                               [{'id': '33abac023ff186c2',
                                 'model_class': 'Group',
                                 'name': 'Listeria',
                                 'url': '/api/groups/33abac023ff186c2'},
                                {'id': '73187219cd372cf8',
                                 'model_class': 'Group',
                                 'name': 'LPN',
                                 'url': '/api/groups/73187219cd372cf8'}]

              module: str = 'groups'

              show_group(group_id: str) -> Dict[str, Any]
                     Get details of a given group.

                     Parameters
                            group_id (str) -- Encoded group ID

                     Return type
                            dict

                     Returns
                            A description of group For example:

                               {'id': '33abac023ff186c2',
                                'model_class': 'Group',
                                'name': 'Listeria',
                                'roles_url': '/api/groups/33abac023ff186c2/roles',
                                'url': '/api/groups/33abac023ff186c2',
                                'users_url': '/api/groups/33abac023ff186c2/users'}

              update_group(group_id: str, group_name: str | None = None, user_ids: List[str] | None = None,
              role_ids: List[str] | None = None) -> None
                     Update a group.

                     Parametersgroup_id (str) -- Encoded group ID

                            • group_name (str) -- A new name for the group. If  None,  the  group  name  is  not
                              changed.

                            • user_ids  (list) -- New list of encoded user IDs for the group. It will substitute
                              the previous list of users (with [] if not specified)

                            • role_ids (list) -- New list of encoded role IDs for the group. It will  substitute
                              the previous list of roles (with [] if not specified)

                     Return type
                            None

                     Returns
                            None

                                                         ----

   Histories
       Contains possible interactions with the Galaxy Histories

       class bioblend.galaxy.histories.HistoryClient(galaxy_instance: GalaxyInstance)
              A generic Client interface defining the common fields.

              All  clients  must  define  the following field (which will be used as part of the URL composition
              (e.g.,  http://<galaxy_instance>/api/libraries):  self.module  =  'workflows'  |   'libraries'   |
              'histories' | ...

              copy_content(history_id: str, content_id: str, source: Literal['hda', 'hdca', 'library',
              'library_folder'] = 'hda') -> Dict[str, Any]
                     Copy existing content (e.g. a dataset) to a history.

                     Parametershistory_id (str) -- ID of the history to which the content should be copied

                            • content_id (str) -- ID of the content to copy

                            • source  (str) -- Source of the content to be copied: 'hda' (for a history dataset,
                              the default), 'hdca' (for a dataset collection), 'library' (for a library dataset)
                              or 'library_folder' (for all datasets in a library folder).

                     Return type
                            dict

                     Returns
                            Information about the copied content

              copy_dataset(history_id: str, dataset_id: str, source: Literal['hda', 'library', 'library_folder']
              = 'hda') -> Dict[str, Any]
                     Copy a dataset to a history.

                     Parametershistory_id (str) -- history ID to which the dataset should be copied

                            • dataset_id (str) -- dataset ID

                            • source (str) -- Source of the dataset to be copied: 'hda' (the default), 'library'
                              or 'library_folder'

                     Return type
                            dict

                     Returns
                            Information about the copied dataset

              create_dataset_collection(history_id: str, collection_description: CollectionDescription |
              Dict[str, Any]) -> Dict[str, Any]
                     Create a new dataset collection

                     Parametershistory_id (str) -- Encoded history ID

                            • collection_description (bioblend.galaxy.dataset_collections.CollectionDescription)
                              --

                              a description of the dataset collection For example:

                                 {'collection_type': 'list',
                                  'element_identifiers': [{'id': 'f792763bee8d277a',
                                                           'name': 'element 1',
                                                           'src': 'hda'},
                                                          {'id': 'f792763bee8d277a',
                                                           'name': 'element 2',
                                                           'src': 'hda'}],
                                  'name': 'My collection list'}

                     Return type
                            dict

                     Returns
                            Information about the new HDCA

              create_history(name: str | None = None) -> Dict[str, Any]
                     Create a new history, optionally setting the name.

                     Parameters
                            name (str) -- Optional name for new history

                     Return type
                            dict

                     Returns
                            Dictionary containing information about newly created history

              create_history_tag(history_id: str, tag: str) -> Dict[str, Any]
                     Create history tag

                     Parametershistory_id (str) -- Encoded history ID

                            • tag (str) -- Add tag to history

                     Return type
                            dict

                     Returns
                            A dictionary with information regarding the tag.  For example:

                               {'id': 'f792763bee8d277a',
                                'model_class': 'HistoryTagAssociation',
                                'user_tname': 'NGS_PE_RUN',
                                'user_value': None}

              delete_dataset(history_id: str, dataset_id: str, purge: bool = False) -> None
                     Mark corresponding dataset as deleted.

                     Parametershistory_id (str) -- Encoded history ID

                            • dataset_id (str) -- Encoded dataset ID

                            • purge (bool) -- if True, also purge (permanently delete) the dataset

                     Return type
                            None

                     Returns
                            None

                     NOTE:
                        The purge option works only if the  Galaxy  instance  has  the  allow_user_dataset_purge
                        option set to true in the config/galaxy.yml configuration file.

              delete_dataset_collection(history_id: str, dataset_collection_id: str) -> None
                     Mark corresponding dataset collection as deleted.

                     Parametershistory_id (str) -- Encoded history ID

                            • dataset_collection_id (str) -- Encoded dataset collection ID

                     Return type
                            None

                     Returns
                            None

              delete_history(history_id: str, purge: bool = False) -> Dict[str, Any]
                     Delete a history.

                     Parametershistory_id (str) -- Encoded history ID

                            • purge (bool) -- if True, also purge (permanently delete) the history

                     Return type
                            dict

                     Returns
                            An  error object if an error occurred or a dictionary containing: id (the encoded id
                            of the history), deleted (if the history was marked  as  deleted),  purged  (if  the
                            history was purged).

                     NOTE:
                        The  purge  option  works  only  if the Galaxy instance has the allow_user_dataset_purge
                        option set to true in the config/galaxy.yml configuration file.

              download_history(history_id: str, jeha_id: str, outf: IO[bytes], chunk_size: int = 4096) -> None
                     Download a history export archive.  Use export_history() to create an export.

                     Parametershistory_id (str) -- history ID

                            • jeha_id (str) -- jeha ID (this should be obtained via export_history())

                            • outf (file) -- output file object, open for writing in binary mode

                            • chunk_size (int) -- how many bytes at a time should be read into memory

                     Return type
                            None

                     Returns
                            None

              export_history(history_id: str, gzip: bool = True, include_hidden: bool = False, include_deleted:
              bool = False, wait: bool = False, maxwait: float | None = None) -> str
                     Start a job to create an export archive for the given history.

                     Parametershistory_id (str) -- history ID

                            • gzip (bool) -- create .tar.gz archive if True, else .tar

                            • include_hidden (bool) -- whether to include hidden datasets in the export

                            • include_deleted (bool) -- whether to include deleted datasets in the export

                            • wait (bool) -- if True, block until the export is ready; else, return immediately

                            • maxwait (float) -- Total time (in seconds) to wait for the export to become ready.
                              When set, implies that wait is True.

                     Return type
                            str

                     Returns
                            jeha_id of the export, or empty if wait is False and the export is not ready.

              get_extra_files(history_id: str, dataset_id: str) -> List[str]
                     Get extra files associated with a composite dataset, or an empty list if there are none.

                     Parametershistory_id (str) -- history ID

                            • dataset_id (str) -- dataset ID

                     Return type
                            list

                     Returns
                            List of extra files

              get_histories(history_id: str | None = None, name: str | None = None, deleted: bool = False,
              published: bool | None = None, slug: str | None = None, all: bool | None = False) ->
              List[Dict[str, Any]]
                     Get all histories, or select a subset by specifying optional arguments for filtering  (e.g.
                     a history name).

                     Parametersname (str) -- History name to filter on.

                            • deleted  (bool)  --  whether to filter for the deleted histories (True) or for the
                              non-deleted ones (False)

                            • published (bool or None) -- whether to filter for the published  histories  (True)
                              or  for  the non-published ones (False). If not set, no filtering is applied. Note
                              the filtering is only applied to the user's own histories; to access all histories
                              published by any user, use the get_published_histories method.

                            • slug (str) -- History slug to filter on

                            • all (bool) -- Whether to include histories from other users. This parameter  works
                              only  on  Galaxy  20.01 or later and can be specified only if the user is a Galaxy
                              admin.

                     Return type
                            list

                     Returns
                            List of history dicts.

                     Changed in  version  0.17.0:  Using  the  deprecated  history_id  parameter  now  raises  a
                     ValueError exception.

              get_most_recently_used_history() -> Dict[str, Any]
                     Returns the current user's most recently used history (not deleted).

                     Return type
                            dict

                     Returns
                            History representation

              get_published_histories(name: str | None = None, deleted: bool = False, slug: str | None = None)
              -> List[Dict[str, Any]]
                     Get  all  published  histories  (by  any  user),  or select a subset by specifying optional
                     arguments for filtering (e.g. a history name).

                     Parametersname (str) -- History name to filter on.

                            • deleted (bool) -- whether to filter for the deleted histories (True)  or  for  the
                              non-deleted ones (False)

                            • slug (str) -- History slug to filter on

                     Return type
                            list

                     Returns
                            List of history dicts.

              get_status(history_id: str) -> Dict[str, Any]
                     Returns the state of this history

                     Parameters
                            history_id (str) -- Encoded history ID

                     Return type
                            dict

                     Returns
                            A dict documenting the current state of the history. Has the following keys: 'state'
                            =  This  is  the  current  state  of  the  history,  such  as  ok,  error,  new etc.
                            'state_details'  =  Contains  individual  statistics  for  various  dataset  states.
                            'percent_complete' = The overall number of datasets processed to completion.

              gi: GalaxyInstance

              import_history(file_path: str | None = None, url: str | None = None) -> Dict[str, Any]
                     Import a history from an archive on disk or a URL.

                     Parametersfile_path (str) -- Path to exported history archive on disk.

                            • url (str) -- URL for an exported history archive

                     Return type
                            dict

                     Returns
                            Dictionary containing information about the imported history

              module: str = 'histories'

              open_history(history_id: str) -> None
                     Open Galaxy in a new tab of the default web browser and switch to the specified history.

                     Parameters
                            history_id (str) -- ID of the history to switch to

                     Return type
                            NoneType

                     Returns
                            None

                     WARNING:
                        After  opening  the  specified history, all previously opened Galaxy tabs in the browser
                        session will have the current history changed to this one, even if the  interface  still
                        shows another history. Refreshing any such tab is recommended.

              show_dataset(history_id: str, dataset_id: str) -> Dict[str, Any]
                     Get details about a given history dataset.

                     Parametershistory_id (str) -- Encoded history ID

                            • dataset_id (str) -- Encoded dataset ID

                     Return type
                            dict

                     Returns
                            Information about the dataset

              show_dataset_collection(history_id: str, dataset_collection_id: str) -> Dict[str, Any]
                     Get details about a given history dataset collection.

                     Parametershistory_id (str) -- Encoded history ID

                            • dataset_collection_id (str) -- Encoded dataset collection ID

                     Return type
                            dict

                     Returns
                            Information about the dataset collection

              show_dataset_provenance(history_id: str, dataset_id: str, follow: bool = False) -> Dict[str, Any]
                     Get  details  related  to  how  dataset  was  created (id, job_id, tool_id, stdout, stderr,
                     parameters, inputs, etc...).

                     Parametershistory_id (str) -- Encoded history ID

                            • dataset_id (str) -- Encoded dataset ID

                            • follow (bool) -- If True, recursively fetch dataset provenance information for all
                              inputs and their inputs, etc.

                     Return type
                            dict

                     Returns
                            Dataset provenance information For example:

                               {'id': '6fbd9b2274c62ebe',
                                'job_id': '5471ba76f274f929',
                                'parameters': {'chromInfo': '"/usr/local/galaxy/galaxy-dist/tool-data/shared/ucsc/chrom/mm9.len"',
                                               'dbkey': '"mm9"',
                                               'experiment_name': '"H3K4me3_TAC_MACS2"',
                                               'input_chipseq_file1': {'id': '6f0a311a444290f2',
                                                                       'uuid': 'null'},
                                               'input_control_file1': {'id': 'c21816a91f5dc24e',
                                                                       'uuid': '16f8ee5e-228f-41e2-921e-a07866edce06'},
                                               'major_command': '{"gsize": "2716965481.0", "bdg": "False", "__current_case__": 0, "advanced_options": {"advanced_options_selector": "off", "__current_case__": 1}, "input_chipseq_file1": 104715, "xls_to_interval": "False", "major_command_selector": "callpeak", "input_control_file1": 104721, "pq_options": {"pq_options_selector": "qvalue", "qvalue": "0.05", "__current_case__": 1}, "bw": "300", "nomodel_type": {"nomodel_type_selector": "create_model", "__current_case__": 1}}'},
                                'stderr': '',
                                'stdout': '',
                                'tool_id': 'toolshed.g2.bx.psu.edu/repos/ziru-zhou/macs2/modencode_peakcalling_macs2/2.0.10.2',
                                'uuid': '5c0c43f5-8d93-44bd-939d-305e82f213c6'}

              show_history(history_id: str, contents: Literal[False] = False) -> Dict[str, Any]

              show_history(history_id: str, contents: Literal[True], deleted: bool | None = None, visible: bool
              | None = None, details: str | None = None, types: List[str] | None = None) -> List[Dict[str, Any]]

              show_history(history_id: str, contents: bool = False, deleted: bool | None = None, visible: bool |
              None = None, details: str | None = None, types: List[str] | None = None) -> Dict[str, Any] |
              List[Dict[str, Any]]
                     Get details of a given history. By default, just get the history meta information.

                     Parametershistory_id (str) -- Encoded history ID to filter on

                            • contents (bool) -- When True, instead of the history details, return a  list  with
                              info  for  all  datasets in the given history.  Note that inside each dataset info
                              dict, the id which should be used for further requests about this history  dataset
                              is given by the value of the id (not dataset_id) key.

                            • deleted  (bool  or  None) -- When contents=True, whether to filter for the deleted
                              datasets (True) or for the non-deleted ones (False).  If not set, no filtering  is
                              applied.

                            • visible  (bool  or  None) -- When contents=True, whether to filter for the visible
                              datasets (True) or for the hidden ones  (False).  If  not  set,  no  filtering  is
                              applied.

                            • details (str) -- When contents=True, include dataset details. Set to 'all' for the
                              most information.

                            • types  (list)  -- When contents=True, filter for history content types.  If set to
                              ['dataset'], return only datasets. If set to ['dataset_collection'],  return  only
                              dataset collections. If not set, no filtering is applied.

                     Return type
                            dict or list of dicts

                     Returns
                            details of the given history or list of dataset info

                     NOTE:
                        As   an   alternative   to   using   the   contents=True   parameter,   consider   using
                        gi.datasets.get_datasets(history_id=history_id)    which    offers    more     extensive
                        functionality for filtering and ordering the results.

              show_matching_datasets(history_id: str, name_filter: str | Pattern[str] | None = None) ->
              List[Dict[str, Any]]
                     Get dataset details for matching datasets within a history.

                     Parametershistory_id (str) -- Encoded history ID

                            • name_filter  (str)  --  Only  datasets  whose name matches the name_filter regular
                              expression will be returned; use plain strings for exact matches and None to match
                              all datasets in the history

                     Return type
                            list

                     Returns
                            List of dictionaries

              undelete_history(history_id: str) -> str
                     Undelete a history

                     Parameters
                            history_id (str) -- Encoded history ID

                     Return type
                            str

                     Returns
                            'OK' if it was deleted

              update_dataset(history_id: str, dataset_id: str, **kwargs: Any) -> Dict[str, Any]
                     Update history dataset metadata. Some of the attributes that can be modified are documented
                     below.

                     Parametershistory_id (str) -- Encoded history ID

                            • dataset_id (str) -- ID of the dataset

                            • name (str) -- Replace history dataset name with the given string

                            • datatype (str) -- Replace the datatype of  the  history  dataset  with  the  given
                              string.  The  string  must  be  a  valid Galaxy datatype, both the current and the
                              target datatypes must allow datatype changes, and the dataset must not be  in  use
                              as  input  or output of a running job (including uploads), otherwise an error will
                              be raised.

                            • genome_build (str) -- Replace history dataset genome build (dbkey)

                            • annotation (str) -- Replace history dataset annotation with given string

                            • deleted (bool) -- Mark or unmark history dataset as deleted

                            • visible (bool) -- Mark or unmark history dataset as visible

                     Return type
                            dict

                     Returns
                            details of the updated dataset

                     Changed in version 0.8.0: Changed the return value from the status code  (type  int)  to  a
                     dict.

              update_dataset_collection(history_id: str, dataset_collection_id: str, **kwargs: Any) -> Dict[str,
              Any]
                     Update history dataset collection metadata. Some of the attributes that can be modified are
                     documented below.

                     Parametershistory_id (str) -- Encoded history ID

                            • dataset_collection_id (str) -- Encoded dataset_collection ID

                            • name (str) -- Replace history dataset collection name with the given string

                            • deleted (bool) -- Mark or unmark history dataset collection as deleted

                            • visible (bool) -- Mark or unmark history dataset collection as visible

                     Return type
                            dict

                     Returns
                            the updated dataset collection attributes

                     Changed  in  version  0.8.0:  Changed the return value from the status code (type int) to a
                     dict.

              update_history(history_id: str, **kwargs: Any) -> Dict[str, Any]
                     Update history metadata information. Some of  the  attributes  that  can  be  modified  are
                     documented below.

                     Parametershistory_id (str) -- Encoded history ID

                            • name (str) -- Replace history name with the given string

                            • annotation (str) -- Replace history annotation with given string

                            • deleted (bool) -- Mark or unmark history as deleted

                            • purged (bool) -- If True, mark history as purged (permanently deleted).

                            • published (bool) -- Mark or unmark history as published

                            • importable (bool) -- Mark or unmark history as importable

                            • tags (list) -- Replace history tags with the given list

                     Return type
                            dict

                     Returns
                            details of the updated history

                     Changed  in  version  0.8.0:  Changed the return value from the status code (type int) to a
                     dict.

              upload_dataset_from_library(history_id: str, lib_dataset_id: str) -> Dict[str, Any]
                     Upload a dataset into the history from a library. Requires the library  dataset  ID,  which
                     can be obtained from the library contents.

                     Parametershistory_id (str) -- Encoded history ID

                            • lib_dataset_id (str) -- Encoded library dataset ID

                     Return type
                            dict

                     Returns
                            Information about the newly created HDA

                                                         ----

   Invocations
       Contains possible interactions with the Galaxy workflow invocations

       class bioblend.galaxy.invocations.InvocationClient(galaxy_instance: GalaxyInstance)
              A generic Client interface defining the common fields.

              All  clients  must  define  the following field (which will be used as part of the URL composition
              (e.g.,  http://<galaxy_instance>/api/libraries):  self.module  =  'workflows'  |   'libraries'   |
              'histories' | ...

              cancel_invocation(invocation_id: str) -> Dict[str, Any]
                     Cancel the scheduling of a workflow.

                     Parameters
                            invocation_id (str) -- Encoded workflow invocation ID

                     Return type
                            dict

                     Returns
                            The workflow invocation being cancelled

              get_invocation_biocompute_object(invocation_id: str) -> Dict[str, Any]
                     Get a BioCompute object for an invocation.

                     Parameters
                            invocation_id (str) -- Encoded workflow invocation ID

                     Return type
                            dict

                     Returns
                            The BioCompute object

              get_invocation_report(invocation_id: str) -> Dict[str, Any]
                     Get a Markdown report for an invocation.

                     Parameters
                            invocation_id (str) -- Encoded workflow invocation ID

                     Return type
                            dict

                     Returns
                            The invocation report.  For example:

                               {'markdown': '\n# Workflow Execution Summary of Example workflow\n\n
                                ## Workflow Inputs\n\n\n## Workflow Outputs\n\n\n
                                ## Workflow\n```galaxy\n
                                workflow_display(workflow_id=f2db41e1fa331b3e)\n```\n',
                                'render_format': 'markdown',
                                'workflows': {'f2db41e1fa331b3e': {'name': 'Example workflow'}}}

              get_invocation_report_pdf(invocation_id: str, file_path: str, chunk_size: int = 4096) -> None
                     Get a PDF report for an invocation.

                     Parametersinvocation_id (str) -- Encoded workflow invocation ID

                            • file_path (str) -- Path to save the report

              get_invocation_step_jobs_summary(invocation_id: str) -> List[Dict[str, Any]]
                     Get  a  detailed  summary of an invocation, listing all jobs with their job IDs and current
                     states.

                     Parameters
                            invocation_id (str) -- Encoded workflow invocation ID

                     Return type
                            list of dicts

                     Returns
                            The invocation step jobs summary.  For example:

                               [{'id': 'e85a3be143d5905b',
                                 'model': 'Job',
                                 'populated_state': 'ok',
                                 'states': {'ok': 1}},
                                {'id': 'c9468fdb6dc5c5f1',
                                 'model': 'Job',
                                 'populated_state': 'ok',
                                 'states': {'running': 1}},
                                {'id': '2a56795cad3c7db3',
                                 'model': 'Job',
                                 'populated_state': 'ok',
                                 'states': {'new': 1}}]

              get_invocation_summary(invocation_id: str) -> Dict[str, Any]
                     Get a summary of an invocation, stating the number of jobs which succeed, which are  paused
                     and which have errored.

                     Parameters
                            invocation_id (str) -- Encoded workflow invocation ID

                     Return type
                            dict

                     Returns
                            The invocation summary.  For example:

                               {'states': {'paused': 4, 'error': 2, 'ok': 2},
                                'model': 'WorkflowInvocation',
                                'id': 'a799d38679e985db',
                                'populated_state': 'ok'}

              get_invocations(workflow_id: str | None = None, history_id: str | None = None, user_id: str | None
              = None, include_terminal: bool = True, limit: int | None = None, view: str = 'collection',
              step_details: bool = False) -> List[Dict[str, Any]]
                     Get  all  workflow  invocations,  or  select  a subset by specifying optional arguments for
                     filtering (e.g. a workflow ID).

                     Parametersworkflow_id (str) -- Encoded workflow ID to filter on

                            • history_id (str) -- Encoded history ID to filter on

                            • user_id (str) -- Encoded user ID to filter on. This must be your own  user  ID  if
                              your are not an admin user.

                            • include_terminal (bool) -- Whether to include terminal states.

                            • limit  (int)  --  Maximum number of invocations to return - if specified, the most
                              recent invocations will be returned.

                            • view (str) -- Level of detail  to  return  per  invocation,  either  'element'  or
                              'collection'.

                            • step_details  (bool) -- If 'view' is 'element', also include details on individual
                              steps.

                     Return type
                            list

                     Returns
                            A list of workflow invocations.  For example:

                               [{'history_id': '2f94e8ae9edff68a',
                                 'id': 'df7a1f0c02a5b08e',
                                 'model_class': 'WorkflowInvocation',
                                 'state': 'new',
                                 'update_time': '2015-10-31T22:00:22',
                                 'uuid': 'c8aa2b1c-801a-11e5-a9e5-8ca98228593c',
                                 'workflow_id': '03501d7626bd192f'}]

              gi: GalaxyInstance

              module: str = 'invocations'

              rerun_invocation(invocation_id: str, inputs_update: dict | None = None, params_update: dict | None
              = None, history_id: str | None = None, history_name: str | None = None, import_inputs_to_history:
              bool = False, replacement_params: dict | None = None, allow_tool_state_corrections: bool = False,
              inputs_by: Literal['step_index|step_uuid', 'step_index', 'step_id', 'step_uuid', 'name'] | None =
              None, parameters_normalized: bool = False) -> Dict[str, Any]
                     Rerun a workflow invocation. For more extensive documentation of all  parameters,  see  the
                     gi.workflows.invoke_workflow() method.

                     Parametersinvocation_id (str) -- Encoded workflow invocation ID to be rerun

                            • inputs_update  (dict)  --  If  different  datasets  should be used to the original
                              invocation, this should contain a mapping of workflow inputs to the  new  datasets
                              and dataset collections.

                            • params_update (dict) -- If different non-dataset tool parameters should be used to
                              the  original  invocation,  this  should  contain  a  mapping of the new parameter
                              values.

                            • history_id (str) -- The encoded history ID where to store  the  workflow  outputs.
                              Alternatively, history_name may be specified to create a new history.

                            • history_name  (str)  --  Create  a  new  history  with the given name to store the
                              workflow outputs. If both history_id and history_name are  provided,  history_name
                              is ignored. If neither is specified, a new 'Unnamed history' is created.

                            • import_inputs_to_history  (bool) -- If True, used workflow inputs will be imported
                              into the history. If False, only workflow outputs will be  visible  in  the  given
                              history.

                            • allow_tool_state_corrections  (bool)  --  If True, allow Galaxy to fill in missing
                              tool state when running workflows. This may be useful for  workflows  using  tools
                              that  have  changed over time or for workflows built outside of Galaxy with only a
                              subset of inputs defined.

                            • replacement_params (dict) -- pattern-based replacements for post-job actions

                            • inputs_by   (str)   --   Determines   how   inputs   are   referenced.   Can    be
                              "step_index|step_uuid" (default), "step_index", "step_id", "step_uuid", or "name".

                            • parameters_normalized   (bool)  --  Whether  Galaxy  should  normalize  the  input
                              parameters to ensure everything is referenced by a numeric step  ID.   Default  is
                              False, but when setting parameters for a subworkflow, True is required.

                     Return type
                            dict

                     Returns
                            A dict describing the new workflow invocation.

                     NOTE:
                        This method works only on Galaxy 21.01 or later.

              run_invocation_step_action(invocation_id: str, step_id: str, action: Any) -> Dict[str, Any]
                     Execute  an  action  for  an active workflow invocation step. The nature of this action and
                     what is expected will vary based on the the type of workflow step (the only currently valid
                     action is True/False for pause steps).

                     Parametersinvocation_id (str) -- Encoded workflow invocation ID

                            • step_id (str) -- Encoded workflow invocation step ID

                            • action (object) -- Action to use when updating state, semantics  depends  on  step
                              type.

                     Return type
                            dict

                     Returns
                            Representation of the workflow invocation step

              show_invocation(invocation_id: str) -> Dict[str, Any]
                     Get  a  workflow  invocation  dictionary  representing  the  scheduling of a workflow. This
                     dictionary may be sparse at first (missing inputs and invocation  steps)  and  will  become
                     more populated as the workflow is actually scheduled.

                     Parameters
                            invocation_id (str) -- Encoded workflow invocation ID

                     Return type
                            dict

                     Returns
                            The workflow invocation.  For example:

                               {'history_id': '2f94e8ae9edff68a',
                                'id': 'df7a1f0c02a5b08e',
                                'inputs': {'0': {'id': 'a7db2fac67043c7e',
                                  'src': 'hda',
                                  'uuid': '7932ffe0-2340-4952-8857-dbaa50f1f46a'}},
                                'model_class': 'WorkflowInvocation',
                                'state': 'ready',
                                'steps': [{'action': None,
                                  'id': 'd413a19dec13d11e',
                                  'job_id': None,
                                  'model_class': 'WorkflowInvocationStep',
                                  'order_index': 0,
                                  'state': None,
                                  'update_time': '2015-10-31T22:00:26',
                                  'workflow_step_id': 'cbbbf59e8f08c98c',
                                  'workflow_step_label': None,
                                  'workflow_step_uuid': 'b81250fd-3278-4e6a-b269-56a1f01ef485'},
                                 {'action': None,
                                  'id': '2f94e8ae9edff68a',
                                  'job_id': 'e89067bb68bee7a0',
                                  'model_class': 'WorkflowInvocationStep',
                                  'order_index': 1,
                                  'state': 'new',
                                  'update_time': '2015-10-31T22:00:26',
                                  'workflow_step_id': '964b37715ec9bd22',
                                  'workflow_step_label': None,
                                  'workflow_step_uuid': 'e62440b8-e911-408b-b124-e05435d3125e'}],
                                'update_time': '2015-10-31T22:00:26',
                                'uuid': 'c8aa2b1c-801a-11e5-a9e5-8ca98228593c',
                                'workflow_id': '03501d7626bd192f'}

              show_invocation_step(invocation_id: str, step_id: str) -> Dict[str, Any]
                     See the details of a particular workflow invocation step.

                     Parametersinvocation_id (str) -- Encoded workflow invocation ID

                            • step_id (str) -- Encoded workflow invocation step ID

                     Return type
                            dict

                     Returns
                            The workflow invocation step.  For example:

                               {'action': None,
                                'id': '63cd3858d057a6d1',
                                'job_id': None,
                                'model_class': 'WorkflowInvocationStep',
                                'order_index': 2,
                                'state': None,
                                'update_time': '2015-10-31T22:11:14',
                                'workflow_step_id': '52e496b945151ee8',
                                'workflow_step_label': None,
                                'workflow_step_uuid': '4060554c-1dd5-4287-9040-8b4f281cf9dc'}

              wait_for_invocation(invocation_id: str, maxwait: float = 12000, interval: float = 3, check: bool =
              True) -> Dict[str, Any]
                     Wait until an invocation is in a terminal state.

                     Parametersinvocation_id (str) -- Invocation ID to wait for.

                            • maxwait  (float)  --  Total  time (in seconds) to wait for the invocation state to
                              become terminal. If the invocation state is  not  terminal  within  this  time,  a
                              TimeoutException will be raised.

                            • interval (float) -- Time (in seconds) to wait between 2 consecutive checks.

                            • check (bool) -- Whether to check if the invocation terminal state is 'scheduled'.

                     Return type
                            dict

                     Returns
                            Details of the workflow invocation.

                                                         ----

   Jobs
       Contains possible interactions with the Galaxy Jobs

       class bioblend.galaxy.jobs.JobsClient(galaxy_instance: GalaxyInstance)
              A generic Client interface defining the common fields.

              All  clients  must  define  the following field (which will be used as part of the URL composition
              (e.g.,  http://<galaxy_instance>/api/libraries):  self.module  =  'workflows'  |   'libraries'   |
              'histories' | ...

              cancel_job(job_id: str) -> bool
                     Cancel a job, deleting output datasets.

                     Parameters
                            job_id (str) -- job ID

                     Return type
                            bool

                     Returns
                            True  if  the  job was successfully cancelled, False if it was already in a terminal
                            state before the cancellation.

              get_common_problems(job_id: str) -> Dict[str, Any]
                     Query inputs and jobs for common  potential  problems  that  might  have  resulted  in  job
                     failure.

                     Parameters
                            job_id (str) -- job ID

                     Return type
                            dict

                     Returns
                            dict containing potential problems

                     NOTE:
                        This method works only on Galaxy 19.05 or later.

              get_destination_params(job_id: str) -> Dict[str, Any]
                     Get destination parameters for a job, describing the environment and location where the job
                     is run.

                     Parameters
                            job_id (str) -- job ID

                     Return type
                            dict

                     Returns
                            Destination parameters for the given job

                     NOTE:
                        This method works only on Galaxy 20.05 or later and if the user is a Galaxy admin.

              get_inputs(job_id: str) -> List[Dict[str, Any]]
                     Get dataset inputs used by a job.

                     Parameters
                            job_id (str) -- job ID

                     Return type
                            list of dicts

                     Returns
                            Inputs for the given job

              get_jobs(state: str | None = None, history_id: str | None = None, invocation_id: str | None =
              None, tool_id: str | None = None, workflow_id: str | None = None, user_id: str | None = None,
              date_range_min: str | None = None, date_range_max: str | None = None, limit: int = 500, offset:
              int = 0, user_details: bool = False, order_by: Literal['create_time', 'update_time'] =
              'update_time') -> List[Dict[str, Any]]
                     Get  all  jobs,  or  select a subset by specifying optional arguments for filtering (e.g. a
                     state).

                     If the user is an admin, this will return jobs for all the users, otherwise  only  for  the
                     current user.

                     Parametersstate (str or list of str) -- Job states to filter on.

                            • history_id (str) -- Encoded history ID to filter on.

                            • invocation_id (string) -- Encoded workflow invocation ID to filter on.

                            • tool_id (str or list of str) -- Tool IDs to filter on.

                            • workflow_id (string) -- Encoded workflow ID to filter on.

                            • user_id  (str)  --  Encoded  user ID to filter on. Only admin users can access the
                              jobs of other users.

                            • date_range_min (str) -- Mininum job update date (in YYYY-MM-DD format)  to  filter
                              on.

                            • date_range_max  (str)  -- Maximum job update date (in YYYY-MM-DD format) to filter
                              on.

                            • limit (int) -- Maximum number of jobs to return.

                            • offset (int) -- Return jobs starting from this specified position.   For  example,
                              if limit is set to 100 and offset to 200, jobs 200-299 will be returned.

                            • user_details  (bool)  --  If  True and the user is an admin, add the user email to
                              each returned job dictionary.

                            • order_by (str) -- Whether  to  order  jobs  by  create_time  or  update_time  (the
                              default).

                     Return type
                            list of dict

                     Returns
                            Summary information for each selected job.  For example:

                               [{'create_time': '2014-03-01T16:16:48.640550',
                                 'exit_code': 0,
                                 'id': 'ebfb8f50c6abde6d',
                                 'model_class': 'Job',
                                 'state': 'ok',
                                 'tool_id': 'fasta2tab',
                                 'update_time': '2014-03-01T16:16:50.657399'},
                                {'create_time': '2014-03-01T16:05:34.851246',
                                 'exit_code': 0,
                                 'id': '1cd8e2f6b131e891',
                                 'model_class': 'Job',
                                 'state': 'ok',
                                 'tool_id': 'upload1',
                                 'update_time': '2014-03-01T16:05:39.558458'}]

                     NOTE:
                        The  following  parameters  work  only on Galaxy 21.05 or later: user_id, limit, offset,
                        workflow_id, invocation_id.

              get_metrics(job_id: str) -> List[Dict[str, Any]]
                     Return job metrics for a given job.

                     Parameters
                            job_id (str) -- job ID

                     Return type
                            list

                     Returns
                            list containing job metrics

                     NOTE:
                        Calling show_job() with full_details=True also returns the metrics for a job if the user
                        is an admin. This method allows to fetch metrics even as a normal user as  long  as  the
                        Galaxy  instance  has the expose_potentially_sensitive_job_metrics option set to true in
                        the config/galaxy.yml configuration file.

              get_outputs(job_id: str) -> List[Dict[str, Any]]
                     Get dataset outputs produced by a job.

                     Parameters
                            job_id (str) -- job ID

                     Return type
                            list of dicts

                     Returns
                            Outputs of the given job

              get_state(job_id: str) -> str
                     Display the current state for a given job of the current user.

                     Parameters
                            job_id (str) -- job ID

                     Return type
                            str

                     Returns
                            state of the given job among the following values: new,  queued,  running,  waiting,
                            ok. If the state cannot be retrieved, an empty string is returned.

                     New in version 0.5.3.

              module: str = 'jobs'

              report_error(job_id: str, dataset_id: str, message: str, email: str | None = None) -> Dict[str,
              Any]
                     Report an error for a given job and dataset to the server administrators.

                     Parametersjob_id (str) -- job ID

                            • dataset_id (str) -- Dataset ID

                            • message (str) -- Error message

                            • email  (str)  --  Email  for  error report submission. If not specified, the email
                              associated with the Galaxy user account is used by default.

                     Return type
                            dict

                     Returns
                            dict containing job error reply

                     NOTE:
                        This method works only on Galaxy 20.01 or later.

              rerun_job(job_id: str, remap: bool = False, tool_inputs_update: Dict[str, Any] | None = None,
              history_id: str | None = None) -> Dict[str, Any]
                     Rerun a job.

                     Parametersjob_id (str) -- job ID

                            • remap (bool) -- when True, the job output(s) will be remapped onto the  dataset(s)
                              created  by  the  original  job; if other jobs were waiting for this job to finish
                              successfully, they will be resumed using the new outputs of this  tool  run.  When
                              False,  new  job  output(s)  will  be created. Note that if Galaxy does not permit
                              remapping for the job in question, specifying True will result in an error.

                            • tool_inputs_update (dict) -- dictionary specifying any  changes  which  should  be
                              made  to  tool  parameters for the rerun job. This dictionary should have the same
                              structure  as  is  required  when  submitting  the   tool_inputs   dictionary   to
                              gi.tools.run_tool(),  but  only  needs  to  include the inputs or parameters to be
                              updated for the rerun job.

                            • history_id (str) -- ID of the history in which the job should be executed; if  not
                              specified, the same history will be used as the original job run.

                     Return type
                            dict

                     Returns
                            Information about outputs and the rerun job

                     NOTE:
                        This method works only on Galaxy 21.01 or later.

              resume_job(job_id: str) -> List[Dict[str, Any]]
                     Resume a job if it is paused.

                     Parameters
                            job_id (str) -- job ID

                     Return type
                            list of dicts

                     Returns
                            list of dictionaries containing output dataset associations

              search_jobs(tool_id: str, inputs: Dict[str, Any], state: str | None = None) -> List[Dict[str,
              Any]]
                     Return jobs matching input parameters.

                     Parameterstool_id (str) -- only return jobs associated with this tool ID

                            • inputs (dict) -- return only jobs that have matching inputs

                            • state (str) -- only return jobs in this state

                     Return type
                            list of dicts

                     Returns
                            Summary information for each matching job

                     This  method  is  designed to scan the list of previously run jobs and find records of jobs
                     with identical input parameters and datasets. This can be used to minimize  the  amount  of
                     repeated work by simply recycling the old results.

                     Changed  in  version  0.16.0: Replaced the job_info parameter with separate tool_id, inputs
                     and state.

              show_job(job_id: str, full_details: bool = False) -> Dict[str, Any]
                     Get details of a given job of the current user.

                     Parametersjob_id (str) -- job ID

                            • full_details (bool) -- when True, the complete list of details for the given job.

                     Return type
                            dict

                     Returns
                            A description of the given job.  For example:

                               {'create_time': '2014-03-01T16:17:29.828624',
                                'exit_code': 0,
                                'id': 'a799d38679e985db',
                                'inputs': {'input': {'id': 'ebfb8f50c6abde6d', 'src': 'hda'}},
                                'model_class': 'Job',
                                'outputs': {'output': {'id': 'a799d38679e985db', 'src': 'hda'}},
                                'params': {'chromInfo': '"/opt/galaxy-central/tool-data/shared/ucsc/chrom/?.len"',
                                           'dbkey': '"?"',
                                           'seq_col': '"2"',
                                           'title_col': '["1"]'},
                                'state': 'ok',
                                'tool_id': 'tab2fasta',
                                'update_time': '2014-03-01T16:17:31.930728'}

              show_job_lock() -> bool
                     Show whether the job lock is active or not. If it is active, no jobs will dispatch  on  the
                     Galaxy server.

                     Return type
                            bool

                     Returns
                            Status of the job lock

                     NOTE:
                        This method works only on Galaxy 20.05 or later and if the user is a Galaxy admin.

              update_job_lock(active: bool = False) -> bool
                     Update  the  job  lock  status  by setting active to either True or False. If True, all job
                     dispatching will be blocked.

                     Return type
                            bool

                     Returns
                            Updated status of the job lock

                     NOTE:
                        This method works only on Galaxy 20.05 or later and if the user is a Galaxy admin.

              wait_for_job(job_id: str, maxwait: float = 12000, interval: float = 3, check: bool = True) ->
              Dict[str, Any]
                     Wait until a job is in a terminal state.

                     Parametersjob_id (str) -- job ID

                            • maxwait (float) -- Total time (in seconds) to wait for the  job  state  to  become
                              terminal.  If  the  job state is not terminal within this time, a TimeoutException
                              will be raised.

                            • interval (float) -- Time (in seconds) to wait between 2 consecutive checks.

                            • check (bool) -- Whether to check if the job terminal state is 'ok'.

                     Return type
                            dict

                     Returns
                            Details of the given job.

                                                         ----

   Libraries
       Contains possible interactions with the Galaxy Data Libraries

       class bioblend.galaxy.libraries.LibraryClient(galaxy_instance: GalaxyInstance)
              A generic Client interface defining the common fields.

              All clients must define the following field (which will be used as part  of  the  URL  composition
              (e.g.,   http://<galaxy_instance>/api/libraries):   self.module  =  'workflows'  |  'libraries'  |
              'histories' | ...

              copy_from_dataset(library_id: str, dataset_id: str, folder_id: str | None = None, message: str =
              '') -> Dict[str, Any]
                     Copy a Galaxy dataset into a library.

                     Parameterslibrary_id (str) -- id of the library where to place the uploaded file

                            • dataset_id (str) -- id of the dataset to copy from

                            • folder_id (str) -- id of the folder where to place the  uploaded  files.   If  not
                              provided, the root folder will be used

                            • message (str) -- message for copying action

                     Return type
                            dict

                     Returns
                            LDDA information

              create_folder(library_id: str, folder_name: str, description: str | None = None, base_folder_id:
              str | None = None) -> List[Dict[str, Any]]
                     Create a folder in a library.

                     Parameterslibrary_id (str) -- library id to use

                            • folder_name (str) -- name of the new folder in the data library

                            • description (str) -- description of the new folder in the data library

                            • base_folder_id  (str)  -- id of the folder where to create the new folder.  If not
                              provided, the root folder will be used

                     Return type
                            list

                     Returns
                            List with a single dictionary containing information about the new folder

              create_library(name: str, description: str | None = None, synopsis: str | None = None) ->
              Dict[str, Any]
                     Create a data library with the properties defined in the arguments.

                     Parametersname (str) -- Name of the new data library

                            • description (str) -- Optional data library description

                            • synopsis (str) -- Optional data library synopsis

                     Return type
                            dict

                     Returns
                            Details of the created library.  For example:

                               {'id': 'f740ab636b360a70',
                                'name': 'Library from bioblend',
                                'url': '/api/libraries/f740ab636b360a70'}

              delete_library(library_id: str) -> Dict[str, Any]
                     Delete a data library.

                     Parameters
                            library_id (str) -- Encoded data library ID identifying the library to be deleted

                     Return type
                            dict

                     Returns
                            Information about the deleted library

                     WARNING:
                        Deleting a data library is irreversible - all of the  data  from  the  library  will  be
                        permanently deleted.

              delete_library_dataset(library_id: str, dataset_id: str, purged: bool = False) -> Dict[str, Any]
                     Delete a library dataset in a data library.

                     Parameterslibrary_id (str) -- library id where dataset is found in

                            • dataset_id (str) -- id of the dataset to be deleted

                            • purged (bool) -- Indicate that the dataset should be purged (permanently deleted)

                     Return type
                            dict

                     Returns
                            A  dictionary  containing  the  dataset id and whether the dataset has been deleted.
                            For example:

                               {'deleted': True,
                                'id': '60e680a037f41974'}

              get_dataset_permissions(dataset_id: str) -> Dict[str, Any]
                     Get the permissions for a dataset.

                     Parameters
                            dataset_id (str) -- id of the dataset

                     Return type
                            dict

                     Returns
                            dictionary with all applicable permissions' values

              get_folders(library_id: str, folder_id: str | None = None, name: str | None = None) ->
              List[Dict[str, Any]]
                     Get all the folders in a library, or select a  subset  by  specifying  a  folder  name  for
                     filtering.

                     Parameterslibrary_id (str) -- library id to use

                            • name  (str)  --  Folder  name  to filter on. For name specify the full path of the
                              folder starting from the library's root folder, e.g. /subfolder/subsubfolder.

                     Return type
                            list

                     Returns
                            list of dicts each containing basic information about a folder

                     Changed in version 1.1.1: Using the deprecated folder_id parameter now raises a  ValueError
                     exception.

              get_libraries(library_id: str | None = None, name: str | None = None, deleted: bool | None =
              False) -> List[Dict[str, Any]]
                     Get  all libraries, or select a subset by specifying optional arguments for filtering (e.g.
                     a library name).

                     Parametersname (str) -- Library name to filter on.

                            • deleted (bool) -- If False (the default), return only  non-deleted  libraries.  If
                              True,  return only deleted libraries. If None, return both deleted and non-deleted
                              libraries.

                     Return type
                            list

                     Returns
                            list of dicts each containing basic information about a library

                     Changed in version 1.1.1: Using the deprecated library_id parameter now raises a ValueError
                     exception.

              get_library_permissions(library_id: str) -> Dict[str, Any]
                     Get the permissions for a library.

                     Parameters
                            library_id (str) -- id of the library

                     Return type
                            dict

                     Returns
                            dictionary with all applicable permissions' values

              module: str = 'libraries'

              set_dataset_permissions(dataset_id: str, access_in: List[str] | None = None, modify_in: List[str]
              | None = None, manage_in: List[str] | None = None) -> Dict[str, Any]
                     Set the permissions for a dataset. Note: it will override all  security  for  this  dataset
                     even if you leave out a permission type.

                     Parametersdataset_id (str) -- id of the dataset

                            • access_in (list) -- list of role ids

                            • modify_in (list) -- list of role ids

                            • manage_in (list) -- list of role ids

                     Return type
                            dict

                     Returns
                            dictionary with all applicable permissions' values

              set_library_permissions(library_id: str, access_in: List[str] | None = None, modify_in: List[str]
              | None = None, add_in: List[str] | None = None, manage_in: List[str] | None = None) -> Dict[str,
              Any]
                     Set  the  permissions  for  a library. Note: it will override all security for this library
                     even if you leave out a permission type.

                     Parameterslibrary_id (str) -- id of the library

                            • access_in (list) -- list of role ids

                            • modify_in (list) -- list of role ids

                            • add_in (list) -- list of role ids

                            • manage_in (list) -- list of role ids

                     Return type
                            dict

                     Returns
                            General information about the library

              show_dataset(library_id: str, dataset_id: str) -> Dict[str, Any]
                     Get details about a given library dataset. The required library_id can be obtained from the
                     datasets's library content details.

                     Parameterslibrary_id (str) -- library id where dataset is found in

                            • dataset_id (str) -- id of the dataset to be inspected

                     Return type
                            dict

                     Returns
                            A dictionary containing information about the dataset in the library

              show_folder(library_id: str, folder_id: str) -> Dict[str, Any]
                     Get details about a given folder. The required folder_id can be obtained from the  folder's
                     library content details.

                     Parameterslibrary_id (str) -- library id to inspect folders in

                            • folder_id (str) -- id of the folder to be inspected

                     Return type
                            dict

                     Returns
                            Information about the folder

              show_library(library_id: str, contents: bool = False) -> Dict[str, Any]
                     Get information about a library.

                     Parameterslibrary_id (str) -- filter for library by library id

                            • contents  (bool)  --  whether to get contents of the library (rather than just the
                              library details)

                     Return type
                            dict

                     Returns
                            details of the given library

              update_library_dataset(dataset_id: str, **kwargs: Any) -> Dict[str, Any]
                     Update library dataset metadata. Some of the attributes that can be modified are documented
                     below.

                     Parametersdataset_id (str) -- id of the dataset to be updated

                            • name (str) -- Replace library dataset name with the given string

                            • misc_info (str) -- Replace library dataset misc_info with given string

                            • file_ext (str) -- Replace library dataset extension  (must  exist  in  the  Galaxy
                              registry)

                            • genome_build (str) -- Replace library dataset genome build (dbkey)

                            • tags (list) -- Replace library dataset tags with the given list

                     Return type
                            dict

                     Returns
                            details of the updated dataset

              upload_file_contents(library_id: str, pasted_content: str, folder_id: str | None = None,
              file_type: str = 'auto', dbkey: str = '?', tags: List[str] | None = None) -> List[Dict[str, Any]]
                     Upload pasted_content to a data library as a new file.

                     Parameterslibrary_id (str) -- id of the library where to place the uploaded file

                            • pasted_content (str) -- Content to upload into the library

                            • folder_id  (str)  --  id  of  the folder where to place the uploaded file.  If not
                              provided, the root folder will be used

                            • file_type (str) -- Galaxy file format name

                            • dbkey (str) -- Dbkey

                            • tags (list) -- A list of tags to add to the datasets

                     Return type
                            list

                     Returns
                            List with a single dictionary containing information about the LDDA

              upload_file_from_local_path(library_id: str, file_local_path: str, folder_id: str | None = None,
              file_type: str = 'auto', dbkey: str = '?', tags: List[str] | None = None) -> List[Dict[str, Any]]
                     Read local file contents from file_local_path and upload data to a library.

                     Parameterslibrary_id (str) -- id of the library where to place the uploaded file

                            • file_local_path (str) -- path of local file to upload

                            • folder_id (str) -- id of the folder where to place  the  uploaded  file.   If  not
                              provided, the root folder will be used

                            • file_type (str) -- Galaxy file format name

                            • dbkey (str) -- Dbkey

                            • tags (list) -- A list of tags to add to the datasets

                     Return type
                            list

                     Returns
                            List with a single dictionary containing information about the LDDA

              upload_file_from_server(library_id: str, server_dir: str, folder_id: str | None = None, file_type:
              str = 'auto', dbkey: str = '?', link_data_only: Literal['copy_files', 'link_to_files'] | None =
              None, roles: str = '', preserve_dirs: bool = False, tag_using_filenames: bool = False, tags:
              List[str] | None = None) -> List[Dict[str, Any]]
                     Upload  all files in the specified subdirectory of the Galaxy library import directory to a
                     library.

                     Parameterslibrary_id (str) -- id of the library where to place the uploaded file

                            • server_dir (str) -- relative path of the  subdirectory  of  library_import_dir  to
                              upload. All and only the files (i.e. no subdirectories) contained in the specified
                              directory will be uploaded

                            • folder_id  (str)  --  id  of the folder where to place the uploaded files.  If not
                              provided, the root folder will be used

                            • file_type (str) -- Galaxy file format name

                            • dbkey (str) -- Dbkey

                            • link_data_only (str) -- either 'copy_files' (default) or 'link_to_files'.  Setting
                              to 'link_to_files' symlinks instead of copying the files

                            • roles (str) --

                              ???

                            • preserve_dirs  (bool) -- Indicate whether to preserve the directory structure when
                              importing dir

                            • tag_using_filenames (bool) --

                              Indicate whether to generate dataset tags from filenames.

                              Changed in version 0.14.0: Changed the default from True to False.

                            • tags (list) -- A list of tags to add to the datasets

                     Return type
                            list

                     Returns
                            List with a single dictionary containing information about the LDDA

                     NOTE:
                        This method works  only  if  the  Galaxy  instance  has  the  library_import_dir  option
                        configured in the config/galaxy.yml configuration file.

              upload_file_from_url(library_id: str, file_url: str, folder_id: str | None = None, file_type: str
              = 'auto', dbkey: str = '?', tags: List[str] | None = None) -> List[Dict[str, Any]]
                     Upload a file to a library from a URL.

                     Parameterslibrary_id (str) -- id of the library where to place the uploaded file

                            • file_url (str) -- URL of the file to upload

                            • folder_id  (str)  --  id  of  the folder where to place the uploaded file.  If not
                              provided, the root folder will be used

                            • file_type (str) -- Galaxy file format name

                            • dbkey (str) -- Dbkey

                            • tags (list) -- A list of tags to add to the datasets

                     Return type
                            list

                     Returns
                            List with a single dictionary containing information about the LDDA

              upload_from_galaxy_filesystem(library_id: str, filesystem_paths: str, folder_id: str | None =
              None, file_type: str = 'auto', dbkey: str = '?', link_data_only: Literal['copy_files',
              'link_to_files'] | None = None, roles: str = '', preserve_dirs: bool = False, tag_using_filenames:
              bool = False, tags: List[str] | None = None) -> List[Dict[str, Any]]
                     Upload a set of files already present on the filesystem of the Galaxy server to a library.

                     Parameterslibrary_id (str) -- id of the library where to place the uploaded file

                            • filesystem_paths (str) -- file paths  on  the  Galaxy  server  to  upload  to  the
                              library, one file per line

                            • folder_id  (str)  --  id  of the folder where to place the uploaded files.  If not
                              provided, the root folder will be used

                            • file_type (str) -- Galaxy file format name

                            • dbkey (str) -- Dbkey

                            • link_data_only (str) -- either 'copy_files' (default) or 'link_to_files'.  Setting
                              to 'link_to_files' symlinks instead of copying the files

                            • roles (str) --

                              ???

                            • preserve_dirs  (bool) -- Indicate whether to preserve the directory structure when
                              importing dir

                            • tag_using_filenames (bool) --

                              Indicate whether to generate dataset tags from filenames.

                              Changed in version 0.14.0: Changed the default from True to False.

                            • tags (list) -- A list of tags to add to the datasets

                     Return type
                            list

                     Returns
                            List of dictionaries containing information about each uploaded LDDA.

                     NOTE:
                        This method works only if the Galaxy instance has the  allow_path_paste  option  set  to
                        true in the config/galaxy.yml configuration file.

              wait_for_dataset(library_id: str, dataset_id: str, maxwait: float = 12000, interval: float = 3) ->
              Dict[str, Any]
                     Wait  until  the  library dataset state is terminal ('ok', 'empty', 'error', 'discarded' or
                     'failed_metadata').

                     Parameterslibrary_id (str) -- library id where dataset is found in

                            • dataset_id (str) -- id of the dataset to wait for

                            • maxwait (float) -- Total time (in seconds) to wait for the dataset state to become
                              terminal.  If  the  dataset  state  is  not   terminal   within   this   time,   a
                              DatasetTimeoutException will be thrown.

                            • interval (float) -- Time (in seconds) to wait between 2 consecutive checks.

                     Return type
                            dict

                     Returns
                            A dictionary containing information about the dataset in the library

                                                         ----

   Quotas
       Contains possible interactions with the Galaxy Quota

       class bioblend.galaxy.quotas.QuotaClient(galaxy_instance: GalaxyInstance)
              A generic Client interface defining the common fields.

              All  clients  must  define  the following field (which will be used as part of the URL composition
              (e.g.,  http://<galaxy_instance>/api/libraries):  self.module  =  'workflows'  |   'libraries'   |
              'histories' | ...

              create_quota(name: str, description: str, amount: str, operation: Literal['+', '-', '='], default:
              Literal['no', 'registered', 'unregistered'] | None = 'no', in_users: List[str] | None = None,
              in_groups: List[str] | None = None) -> Dict[str, Any]
                     Create a new quota

                     Parametersname  (str)  --  Name  for  the  new  quota.  This  must be unique within a Galaxy
                              instance.

                            • description (str) -- Quota description

                            • amount (str) -- Quota size (E.g. 10000MB, 99 gb, 0.2T, unlimited)

                            • operation (str) -- One of (+, -, =)

                            • default (str) -- Whether or not this is a default  quota.  Valid  values  are  no,
                              unregistered, registered. None is equivalent to no.

                            • in_users (list of str) -- A list of user IDs or user emails.

                            • in_groups (list of str) -- A list of group IDs or names.

                     Return type
                            dict

                     Returns
                            A description of quota.  For example:

                               {'url': '/galaxy/api/quotas/386f14984287a0f7',
                                'model_class': 'Quota',
                                'message': "Quota 'Testing' has been created with 1 associated users and 0 associated groups.",
                                'id': '386f14984287a0f7',
                                'name': 'Testing'}

              delete_quota(quota_id: str) -> str
                     Delete a quota

                     Before a quota can be deleted, the quota must not be a default quota.

                     Parameters
                            quota_id (str) -- Encoded quota ID.

                     Return type
                            str

                     Returns
                            A description of the changes, mentioning the deleted quota.  For example:

                               "Deleted 1 quotas: Testing-B"

              get_quotas(deleted: bool = False) -> List[Dict[str, Any]]
                     Get a list of quotas

                     Parameters
                            deleted (bool) -- Only return quota(s) that have been deleted

                     Return type
                            list

                     Returns
                            A list of dicts with details on individual quotas.  For example:

                               [{'id': '0604c8a56abe9a50',
                                 'model_class': 'Quota',
                                 'name': 'test ',
                                 'url': '/api/quotas/0604c8a56abe9a50'},
                                {'id': '1ee267091d0190af',
                                 'model_class': 'Quota',
                                 'name': 'workshop',
                                 'url': '/api/quotas/1ee267091d0190af'}]

              module: str = 'quotas'

              show_quota(quota_id: str, deleted: bool = False) -> Dict[str, Any]
                     Display information on a quota

                     Parametersquota_id (str) -- Encoded quota ID

                            • deleted (bool) -- Search for quota in list of ones already marked as deleted

                     Return type
                            dict

                     Returns
                            A description of quota.  For example:

                               {'bytes': 107374182400,
                                'default': [],
                                'description': 'just testing',
                                'display_amount': '100.0 GB',
                                'groups': [],
                                'id': '0604c8a56abe9a50',
                                'model_class': 'Quota',
                                'name': 'test ',
                                'operation': '=',
                                'users': []}

              undelete_quota(quota_id: str) -> str
                     Undelete a quota

                     Parameters
                            quota_id (str) -- Encoded quota ID.

                     Return type
                            str

                     Returns
                            A description of the changes, mentioning the undeleted quota.  For example:

                               "Undeleted 1 quotas: Testing-B"

              update_quota(quota_id: str, name: str | None = None, description: str | None = None, amount: str |
              None = None, operation: Literal['+', '-', '='] | None = None, default: str = 'no', in_users:
              List[str] | None = None, in_groups: List[str] | None = None) -> str
                     Update an existing quota

                     Parametersquota_id (str) -- Encoded quota ID

                            • name  (str)  --  Name  for  the  new  quota.  This  must be unique within a Galaxy
                              instance.

                            • description (str) -- Quota description. If you supply this parameter, but not  the
                              name, an error will be thrown.

                            • amount (str) -- Quota size (E.g. 10000MB, 99 gb, 0.2T, unlimited)

                            • operation  (str)  --  One of (+, -, =). If you wish to change this value, you must
                              also provide the amount, otherwise it will not take effect.

                            • default (str) -- Whether or not this is a default  quota.  Valid  values  are  no,
                              unregistered,  registered.  Calling this method with default="no" on a non-default
                              quota will throw an error. Not passing this parameter is equivalent to passing no.

                            • in_users (list of str) -- A list of user IDs or user emails.

                            • in_groups (list of str) -- A list of group IDs or names.

                     Return type
                            str

                     Returns
                            A semicolon separated list of changes to the quota.  For example:

                               "Quota 'Testing-A' has been renamed to 'Testing-B'; Quota 'Testing-e' is now '-100.0 GB'; Quota 'Testing-B' is now the default for unregistered users"

                                                         ----

   Roles
       Contains possible interactions with the Galaxy Roles

       class bioblend.galaxy.roles.RolesClient(galaxy_instance: GalaxyInstance)
              A generic Client interface defining the common fields.

              All clients must define the following field (which will be used as part  of  the  URL  composition
              (e.g.,   http://<galaxy_instance>/api/libraries):   self.module  =  'workflows'  |  'libraries'  |
              'histories' | ...

              create_role(role_name: str, description: str, user_ids: List[str] | None = None, group_ids:
              List[str] | None = None) -> Dict[str, Any]
                     Create a new role.

                     Parametersrole_name (str) -- A name for the new role

                            • description (str) -- Description for the new role

                            • user_ids (list) -- A list of encoded user IDs to add to the new role

                            • group_ids (list) -- A list of encoded group IDs to add to the new role

                     Return type
                            dict

                     Returns
                            Details of the newly created role.  For example:

                               {'description': 'desc',
                                'url': '/api/roles/ebfb8f50c6abde6d',
                                'model_class': 'Role',
                                'type': 'admin',
                                'id': 'ebfb8f50c6abde6d',
                                'name': 'Foo'}

                     Changed in version 0.15.0: Changed the return value from a 1-element list to a dict.

              get_roles() -> List[Dict[str, Any]]
                     Displays a collection (list) of roles.

                     Return type
                            list

                     Returns
                            A list of dicts with details on individual roles.  For example:

                               [{"id": "f2db41e1fa331b3e",
                                 "model_class": "Role",
                                 "name": "Foo",
                                 "url": "/api/roles/f2db41e1fa331b3e"},
                                {"id": "f597429621d6eb2b",
                                 "model_class": "Role",
                                 "name": "Bar",
                                 "url": "/api/roles/f597429621d6eb2b"}]

              module: str = 'roles'

              show_role(role_id: str) -> Dict[str, Any]
                     Display information on a single role

                     Parameters
                            role_id (str) -- Encoded role ID

                     Return type
                            dict

                     Returns
                            Details of the given role.  For example:

                               {"description": "Private Role for Foo",
                                "id": "f2db41e1fa331b3e",
                                "model_class": "Role",
                                "name": "Foo",
                                "type": "private",
                                "url": "/api/roles/f2db41e1fa331b3e"}

                                                         ----

   Tools
                                                         ----

   Tool data tables
       Contains possible interactions with the Galaxy Tool data tables

       class bioblend.galaxy.tool_data.ToolDataClient(galaxy_instance: GalaxyInstance)
              A generic Client interface defining the common fields.

              All clients must define the following field (which will be used as part  of  the  URL  composition
              (e.g.,   http://<galaxy_instance>/api/libraries):   self.module  =  'workflows'  |  'libraries'  |
              'histories' | ...

              delete_data_table(data_table_id: str, values: str) -> Dict[str, Any]
                     Delete an item from a data table.

                     Parametersdata_table_id (str) -- ID of the data table

                            • values (str) -- a "|" separated list of column contents, there must be a value for
                              all the columns of the data table

                     Return type
                            dict

                     Returns
                            Remaining contents of the given data table

              get_data_tables() -> List[Dict[str, Any]]
                     Get the list of all data tables.

                     Return type
                            list

                     Returns
                            A list of dicts with details on individual data tables.  For example:

                               [{"model_class": "TabularToolDataTable", "name": "fasta_indexes"},
                                {"model_class": "TabularToolDataTable", "name": "bwa_indexes"}]

              module: str = 'tool_data'

              reload_data_table(data_table_id: str) -> Dict[str, Any]
                     Reload a data table.

                     Parameters
                            data_table_id (str) -- ID of the data table

                     Return type
                            dict

                     Returns
                            A description of the given data table and its content.  For example:

                               {'columns': ['value', 'dbkey', 'name', 'path'],
                                'fields': [['test id',
                                            'test',
                                            'test name',
                                            '/opt/galaxy-dist/tool-data/test/seq/test id.fa']],
                                'model_class': 'TabularToolDataTable',
                                'name': 'all_fasta'}

              show_data_table(data_table_id: str) -> Dict[str, Any]
                     Get details of a given data table.

                     Parameters
                            data_table_id (str) -- ID of the data table

                     Return type
                            dict

                     Returns
                            A description of the given data table and its content.  For example:

                               {'columns': ['value', 'dbkey', 'name', 'path'],
                                'fields': [['test id',
                                            'test',
                                            'test name',
                                            '/opt/galaxy-dist/tool-data/test/seq/test id.fa']],
                                'model_class': 'TabularToolDataTable',
                                'name': 'all_fasta'}

                                                         ----

   Tool dependencies
       Contains interactions dealing with Galaxy dependency resolvers.

       class bioblend.galaxy.tool_dependencies.ToolDependenciesClient(galaxy_instance: GalaxyInstance)
              A generic Client interface defining the common fields.

              All clients must define the following field (which will be used as part  of  the  URL  composition
              (e.g.,   http://<galaxy_instance>/api/libraries):   self.module  =  'workflows'  |  'libraries'  |
              'histories' | ...

              delete_unused_dependency_paths(paths: List[str]) -> None
                     Delete unused paths

                     Parameters
                            paths (list) -- paths to delete

              module: str = 'dependency_resolvers'

              summarize_toolbox(index: int | None = None, tool_ids: List[str] | None = None, resolver_type: str
              | None = None, include_containers: bool = False, container_type: str | None = None, index_by:
              Literal['requirements', 'tools'] = 'requirements') -> list
                     Summarize requirements across toolbox (for Tool Management grid).

                     Parametersindex (int) -- index of the dependency resolver with  respect  to  the  dependency
                              resolvers config file

                            • tool_ids (list) -- tool_ids to return when index_by=tools

                            • resolver_type (str) -- restrict to specified resolver type

                            • include_containers (bool) -- include container resolvers in resolution

                            • container_type (str) -- restrict to specified container type

                            • index_by  (str) -- By default results are grouped by requirements.  Set to 'tools'
                              to return one entry per tool.

                     Return type
                            list of dicts

                     Returns
                            dictified descriptions of the dependencies, with attribute dependency_type: None  if
                            no match was found.  For example:

                               [{'requirements': [{'name': 'galaxy_sequence_utils',
                                                   'specs': [],
                                                   'type': 'package',
                                                   'version': '1.1.4'},
                                                  {'name': 'bx-python',
                                                   'specs': [],
                                                   'type': 'package',
                                                   'version': '0.8.6'}],
                                 'status': [{'cacheable': False,
                                             'dependency_type': None,
                                             'exact': True,
                                             'model_class': 'NullDependency',
                                             'name': 'galaxy_sequence_utils',
                                             'version': '1.1.4'},
                                             {'cacheable': False,
                                             'dependency_type': None,
                                             'exact': True,
                                             'model_class': 'NullDependency',
                                             'name': 'bx-python',
                                             'version': '0.8.6'}],
                                 'tool_ids': ['vcf_to_maf_customtrack1']}]

                     NOTE:
                        This  method  works  only on Galaxy 20.01 or later and if the user is a Galaxy admin. It
                        relies on an experimental API particularly tied to the GUI and therefore is  subject  to
                        breaking changes.

              unused_dependency_paths() -> List[str]
                     List unused dependencies

                                                         ----

   ToolShed
                                                         ----

   Users
                                                         ----

   Visual
                                                         ----

   Workflows
       Contains possible interactions with the Galaxy Workflows

       class bioblend.galaxy.workflows.WorkflowClient(galaxy_instance: GalaxyInstance)
              A generic Client interface defining the common fields.

              All  clients  must  define  the following field (which will be used as part of the URL composition
              (e.g.,  http://<galaxy_instance>/api/libraries):  self.module  =  'workflows'  |   'libraries'   |
              'histories' | ...

              cancel_invocation(workflow_id: str, invocation_id: str) -> Dict[str, Any]
                     Cancel the scheduling of a workflow.

                     Parametersworkflow_id (str) -- Encoded workflow ID

                            • invocation_id (str) -- Encoded workflow invocation ID

                     Return type
                            dict

                     Returns
                            The workflow invocation being cancelled

              delete_workflow(workflow_id: str) -> None
                     Delete a workflow identified by workflow_id.

                     Parameters
                            workflow_id (str) -- Encoded workflow ID

                     WARNING:
                        Deleting  a workflow is irreversible in Galaxy versions < 23.01 - all workflow data will
                        be permanently deleted.

              export_workflow_dict(workflow_id: str, version: int | None = None) -> Dict[str, Any]
                     Exports a workflow.

                     Parametersworkflow_id (str) -- Encoded workflow ID

                            • version (int) -- Workflow version to export

                     Return type
                            dict

                     Returns
                            Dictionary representing the requested workflow

              export_workflow_to_local_path(workflow_id: str, file_local_path: str, use_default_filename: bool =
              True) -> None
                     Exports a workflow in JSON format to a given local path.

                     Parametersworkflow_id (str) -- Encoded workflow ID

                            • file_local_path (str) -- Local path to which the  exported  file  will  be  saved.
                              (Should not contain filename if use_default_name=True)

                            • use_default_filename  (bool)  --  If  the  use_default_name parameter is True, the
                              exported file will be saved as file_local_path/Galaxy-Workflow-%s.ga, where %s  is
                              the  workflow  name.  If  use_default_name is False, file_local_path is assumed to
                              contain the full file path including filename.

                     Return type
                            None

                     Returns
                            None

              extract_workflow_from_history(history_id: str, workflow_name: str, job_ids: List[str] | None =
              None, dataset_hids: List[str] | None = None, dataset_collection_hids: List[str] | None = None) ->
              Dict[str, Any]
                     Extract a workflow from a history.

                     Parametershistory_id (str) -- Encoded history ID

                            • workflow_name (str) -- Name of the workflow to create

                            • job_ids (list) -- Optional list of job IDs to filter the jobs to extract from  the
                              history

                            • dataset_hids  (list)  --  Optional  list of dataset hids corresponding to workflow
                              inputs when extracting a workflow from history

                            • dataset_collection_hids  (list)  --  Optional  list  of  dataset  collection  hids
                              corresponding to workflow inputs when extracting a workflow from history

                     Return type
                            dict

                     Returns
                            A description of the created workflow

              get_invocations(workflow_id: str) -> List[Dict[str, Any]]
                     Get a list containing all the workflow invocations corresponding to the specified workflow.

                     For more advanced filtering use InvocationClient.get_invocations().

                     Parameters
                            workflow_id (str) -- Encoded workflow ID

                     Return type
                            list

                     Returns
                            A list of workflow invocations.  For example:

                               [{'history_id': '2f94e8ae9edff68a',
                                 'id': 'df7a1f0c02a5b08e',
                                 'model_class': 'WorkflowInvocation',
                                 'state': 'new',
                                 'update_time': '2015-10-31T22:00:22',
                                 'uuid': 'c8aa2b1c-801a-11e5-a9e5-8ca98228593c',
                                 'workflow_id': '03501d7626bd192f'}]

              get_workflow_inputs(workflow_id: str, label: str) -> List[str]
                     Get a list of workflow input IDs that match the given label.  If no input matches the given
                     label, an empty list is returned.

                     Parametersworkflow_id (str) -- Encoded workflow ID

                            • label (str) -- label to filter workflow inputs on

                     Return type
                            list

                     Returns
                            list of workflow inputs matching the label query

              get_workflows(workflow_id: str | None = None, name: str | None = None, published: bool = False) ->
              List[Dict[str, Any]]
                     Get  all workflows, or select a subset by specifying optional arguments for filtering (e.g.
                     a workflow name).

                     Parametersname (str) -- Workflow name to filter on.

                            • published (bool) -- if True, return also published workflows

                     Return type
                            list

                     Returns
                            A list of workflow dicts.  For example:

                               [{'id': '92c56938c2f9b315',
                                 'name': 'Simple',
                                 'url': '/api/workflows/92c56938c2f9b315'}]

                     Changed in  version  1.1.1:  Using  the  deprecated  workflow_id  parameter  now  raises  a
                     ValueError exception.

              import_shared_workflow(workflow_id: str) -> Dict[str, Any]
                     Imports a new workflow from the shared published workflows.

                     Parameters
                            workflow_id (str) -- Encoded workflow ID

                     Return type
                            dict

                     Returns
                            A description of the workflow.  For example:

                               {'id': 'ee0e2b4b696d9092',
                                'model_class': 'StoredWorkflow',
                                'name': 'Super workflow that solves everything!',
                                'published': False,
                                'tags': [],
                                'url': '/api/workflows/ee0e2b4b696d9092'}

              import_workflow_dict(workflow_dict: Dict[str, Any], publish: bool = False) -> Dict[str, Any]
                     Imports a new workflow given a dictionary representing a previously exported workflow.

                     Parametersworkflow_dict (dict) -- dictionary representing the workflow to be imported

                            • publish  (bool)  --  if True the uploaded workflow will be published; otherwise it
                              will be visible only by the user which uploads it (default)

                     Return type
                            dict

                     Returns
                            Information about the imported workflow.  For example:

                               {'name': 'Training: 16S rRNA sequencing with mothur: main tutorial',
                                'tags': [],
                                'deleted': false,
                                'latest_workflow_uuid': '368c6165-ccbe-4945-8a3c-d27982206d66',
                                'url': '/api/workflows/94bac0a90086bdcf',
                                'number_of_steps': 44,
                                'published': false,
                                'owner': 'jane-doe',
                                'model_class': 'StoredWorkflow',
                                'id': '94bac0a90086bdcf'}

              import_workflow_from_local_path(file_local_path: str, publish: bool = False) -> Dict[str, Any]
                     Imports a new workflow given the path to a file containing a previously exported workflow.

                     Parametersfile_local_path (str) -- File to upload to the server for new workflow

                            • publish (bool) -- if True the uploaded workflow will be  published;  otherwise  it
                              will be visible only by the user which uploads it (default)

                     Return type
                            dict

                     Returns
                            Information about the imported workflow.  For example:

                               {'name': 'Training: 16S rRNA sequencing with mothur: main tutorial',
                                'tags': [],
                                'deleted': false,
                                'latest_workflow_uuid': '368c6165-ccbe-4945-8a3c-d27982206d66',
                                'url': '/api/workflows/94bac0a90086bdcf',
                                'number_of_steps': 44,
                                'published': false,
                                'owner': 'jane-doe',
                                'model_class': 'StoredWorkflow',
                                'id': '94bac0a90086bdcf'}

              invoke_workflow(workflow_id: str, inputs: dict | None = None, params: dict | None = None,
              history_id: str | None = None, history_name: str | None = None, import_inputs_to_history: bool =
              False, replacement_params: dict | None = None, allow_tool_state_corrections: bool = False,
              inputs_by: Literal['step_index|step_uuid', 'step_index', 'step_id', 'step_uuid', 'name'] | None =
              None, parameters_normalized: bool = False, require_exact_tool_versions: bool = True) -> Dict[str,
              Any]
                     Invoke  the  workflow identified by workflow_id. This will cause a workflow to be scheduled
                     and return an object describing the workflow invocation.

                     Parametersworkflow_id (str) -- Encoded workflow ID

                            • inputs (dict) --

                              A mapping of workflow inputs to datasets and dataset  collections.   The  datasets
                              source  can  be  a  LibraryDatasetDatasetAssociation  (ldda), LibraryDataset (ld),
                              HistoryDatasetAssociation (hda), or HistoryDatasetCollectionAssociation (hdca).

                              The map must be in the following format: {'<input_index>': {'id': <encoded dataset
                              ID>, 'src': '[ldda, ld,  hda,  hdca]'}}  (e.g.  {'2':  {'id':  '29beef4fadeed09f',
                              'src': 'hda'}})

                              This  map  may also be indexed by the UUIDs of the workflow steps, as indicated by
                              the uuid property of steps returned from the Galaxy  API.  Alternatively  workflow
                              steps  may  be  addressed  by the label that can be set in the workflow editor. If
                              using uuid or label you need to also set the inputs_by parameter to  step_uuid  or
                              name.

                            • params (dict) -- A mapping of non-datasets tool parameters (see below)

                            • history_id  (str)  --  The  encoded history ID where to store the workflow output.
                              Alternatively, history_name may be specified to create a new history.

                            • history_name (str) -- Create a new history  with  the  given  name  to  store  the
                              workflow output. If both history_id and history_name are provided, history_name is
                              ignored. If neither is specified, a new 'Unnamed history' is created.

                            • import_inputs_to_history  (bool) -- If True, used workflow inputs will be imported
                              into the history. If False, only workflow outputs will be  visible  in  the  given
                              history.

                            • allow_tool_state_corrections  (bool)  --  If True, allow Galaxy to fill in missing
                              tool state when running workflows. This may be useful for  workflows  using  tools
                              that  have  changed over time or for workflows built outside of Galaxy with only a
                              subset of inputs defined.

                            • replacement_params (dict) -- pattern-based replacements for post-job actions  (see
                              below)

                            • inputs_by    (str)   --   Determines   how   inputs   are   referenced.   Can   be
                              "step_index|step_uuid" (default), "step_index", "step_id", "step_uuid", or "name".

                            • parameters_normalized (bool) -- Whether Galaxy should normalize params  to  ensure
                              everything  is referenced by a numeric step ID. Default is False, but when setting
                              params for a subworkflow, True is required.

                            • require_exact_tool_versions (bool) -- Whether invocation  should  fail  if  Galaxy
                              does  not  have  the exact tool versions. Default is True.  Parameter does not any
                              effect for Galaxy versions < 22.05.

                     Return type
                            dict

                     Returns
                            A dict containing the workflow invocation describing the scheduling of the workflow.
                            For example:

                               {'history_id': '2f94e8ae9edff68a',
                                'id': 'df7a1f0c02a5b08e',
                                'inputs': {'0': {'id': 'a7db2fac67043c7e',
                                                 'src': 'hda',
                                                 'uuid': '7932ffe0-2340-4952-8857-dbaa50f1f46a'}},
                                'model_class': 'WorkflowInvocation',
                                'state': 'ready',
                                'steps': [{'action': None,
                                           'id': 'd413a19dec13d11e',
                                           'job_id': None,
                                           'model_class': 'WorkflowInvocationStep',
                                           'order_index': 0,
                                           'state': None,
                                           'update_time': '2015-10-31T22:00:26',
                                           'workflow_step_id': 'cbbbf59e8f08c98c',
                                           'workflow_step_label': None,
                                           'workflow_step_uuid': 'b81250fd-3278-4e6a-b269-56a1f01ef485'},
                                          {'action': None,
                                           'id': '2f94e8ae9edff68a',
                                           'job_id': 'e89067bb68bee7a0',
                                           'model_class': 'WorkflowInvocationStep',
                                           'order_index': 1,
                                           'state': 'new',
                                           'update_time': '2015-10-31T22:00:26',
                                           'workflow_step_id': '964b37715ec9bd22',
                                           'workflow_step_label': None,
                                           'workflow_step_uuid': 'e62440b8-e911-408b-b124-e05435d3125e'}],
                                'update_time': '2015-10-31T22:00:26',
                                'uuid': 'c8aa2b1c-801a-11e5-a9e5-8ca98228593c',
                                'workflow_id': '03501d7626bd192f'}

                     The params dict should be specified as follows:

                        {STEP_ID: PARAM_DICT, ...}

                     where PARAM_DICT is:

                        {PARAM_NAME: VALUE, ...}

                     For backwards compatibility, the  following  (deprecated)  format  is  also  supported  for
                     params:

                        {TOOL_ID: PARAM_DICT, ...}

                     in  which case PARAM_DICT affects all steps with the given tool id.  If both by-tool-id and
                     by-step-id specifications are used, the latter takes precedence.

                     Finally (again, for backwards compatibility), PARAM_DICT can also be specified as:

                        {'param': PARAM_NAME, 'value': VALUE}

                     Note that this format allows only one parameter to be set per step.

                     For a repeat parameter, the names of the contained parameters  needs  to  be  specified  as
                     <repeat  name>_<repeat  index>|<param  name>,  with  the  repeat  index  starting at 0. For
                     example, if the tool XML contains:

                        <repeat name="cutoff" title="Parameters used to filter cells" min="1">
                            <param name="name" type="text" value="n_genes" label="Name of param...">
                                <option value="n_genes">n_genes</option>
                                <option value="n_counts">n_counts</option>
                            </param>
                            <param name="min" type="float" min="0" value="0" label="Min value"/>
                        </repeat>

                     then the PARAM_DICT should be something like:

                        {...
                         "cutoff_0|name": "n_genes",
                         "cutoff_0|min": "2",
                         "cutoff_1|name": "n_counts",
                         "cutoff_1|min": "4",
                         ...}

                     At the time of this writing, it is not possible to change the number of times the contained
                     parameters are repeated. Therefore, the parameter indexes can go from 0 to n-1, where n  is
                     the  number  of  times  the  repeated  element was added when the workflow was saved in the
                     Galaxy UI.

                     The replacement_params dict should map parameter names in post-job actions (PJAs) to  their
                     runtime values. For instance, if the final step has a PJA like the following:

                        {'RenameDatasetActionout_file1': {'action_arguments': {'newname': '${output}'},
                                                          'action_type': 'RenameDatasetAction',
                                                          'output_name': 'out_file1'}}

                     then the following renames the output dataset to 'foo':

                        replacement_params = {'output': 'foo'}

                     see also this email thread.

                     WARNING:
                        Historically, workflow invocation consumed a dataset_map data structure that was indexed
                        by  unencoded  workflow step IDs. These IDs would not be stable across Galaxy instances.
                        The new inputs property is instead indexed by either the order_index property (which  is
                        stable across workflow imports) or the step UUID which is also stable.

              module: str = 'workflows'

              refactor_workflow(workflow_id: str, actions: List[Dict[str, Any]], dry_run: bool = False) ->
              Dict[str, Any]
                     Refactor workflow with given actions.

                     Parametersworkflow_id (str) -- Encoded workflow ID

                            • actions (list of dicts) -- .INDENT 2.0

                            Actions to use for refactoring the workflow. The following
                              actions      are      supported:      update_step_label,     update_step_position,
                              update_output_label,     update_name,      update_annotation,      update_license,
                              update_creator,   update_report,   add_step,   add_input,   disconnect,   connect,
                              fill_defaults,   fill_step_defaults,   extract_input,    extract_legacy_parameter,
                              remove_unlabeled_workflow_outputs,     upgrade_all_steps,     upgrade_subworkflow,
                              upgrade_tool.

                            An example value for the actions argument might be:

                          actions = [
                              {"action_type": "add_input", "type": "data", "label": "foo"},
                              {"action_type": "update_step_label", "label": "bar", "step": {"label": "foo"}},
                          ]

                     • dry_run (bool) -- When true, perform a dry run where the existing workflow is  preserved.
                       The  refactored  workflow  is  returned in the output of the method, but not saved on the
                       Galaxy server.

              Return type
                     dict

              Returns
                     Dictionary containing logged messages for the executed actions and the refactored workflow.

              run_invocation_step_action(workflow_id: str, invocation_id: str, step_id: str, action: Any) ->
              Dict[str, Any]
                     Execute an action for an active workflow invocation step. The nature  of  this  action  and
                     what is expected will vary based on the the type of workflow step (the only currently valid
                     action is True/False for pause steps).

                     Parametersworkflow_id (str) -- Encoded workflow ID

                            • invocation_id (str) -- Encoded workflow invocation ID

                            • step_id (str) -- Encoded workflow invocation step ID

                            • action  (object)  --  Action to use when updating state, semantics depends on step
                              type.

                     Return type
                            dict

                     Returns
                            Representation of the workflow invocation step

              show_invocation(workflow_id: str, invocation_id: str) -> Dict[str, Any]
                     Get a workflow invocation object representing the scheduling of a workflow. This object may
                     be sparse at first (missing inputs and invocation steps) and will become more populated  as
                     the workflow is actually scheduled.

                     Parametersworkflow_id (str) -- Encoded workflow ID

                            • invocation_id (str) -- Encoded workflow invocation ID

                     Return type
                            dict

                     Returns
                            The workflow invocation.  For example:

                               {'history_id': '2f94e8ae9edff68a',
                                'id': 'df7a1f0c02a5b08e',
                                'inputs': {'0': {'id': 'a7db2fac67043c7e',
                                                 'src': 'hda',
                                                 'uuid': '7932ffe0-2340-4952-8857-dbaa50f1f46a'}},
                                'model_class': 'WorkflowInvocation',
                                'state': 'ready',
                                'steps': [{'action': None,
                                           'id': 'd413a19dec13d11e',
                                           'job_id': None,
                                           'model_class': 'WorkflowInvocationStep',
                                           'order_index': 0,
                                           'state': None,
                                           'update_time': '2015-10-31T22:00:26',
                                           'workflow_step_id': 'cbbbf59e8f08c98c',
                                           'workflow_step_label': None,
                                           'workflow_step_uuid': 'b81250fd-3278-4e6a-b269-56a1f01ef485'},
                                          {'action': None,
                                           'id': '2f94e8ae9edff68a',
                                           'job_id': 'e89067bb68bee7a0',
                                           'model_class': 'WorkflowInvocationStep',
                                           'order_index': 1,
                                           'state': 'new',
                                           'update_time': '2015-10-31T22:00:26',
                                           'workflow_step_id': '964b37715ec9bd22',
                                           'workflow_step_label': None,
                                           'workflow_step_uuid': 'e62440b8-e911-408b-b124-e05435d3125e'}],
                                'update_time': '2015-10-31T22:00:26',
                                'uuid': 'c8aa2b1c-801a-11e5-a9e5-8ca98228593c',
                                'workflow_id': '03501d7626bd192f'}

              show_invocation_step(workflow_id: str, invocation_id: str, step_id: str) -> Dict[str, Any]
                     See the details of a particular workflow invocation step.

                     Parametersworkflow_id (str) -- Encoded workflow ID

                            • invocation_id (str) -- Encoded workflow invocation ID

                            • step_id (str) -- Encoded workflow invocation step ID

                     Return type
                            dict

                     Returns
                            The workflow invocation step.  For example:

                               {'action': None,
                                'id': '63cd3858d057a6d1',
                                'job_id': None,
                                'model_class': 'WorkflowInvocationStep',
                                'order_index': 2,
                                'state': None,
                                'update_time': '2015-10-31T22:11:14',
                                'workflow_step_id': '52e496b945151ee8',
                                'workflow_step_label': None,
                                'workflow_step_uuid': '4060554c-1dd5-4287-9040-8b4f281cf9dc'}

              show_versions(workflow_id: str) -> List[Dict[str, Any]]
                     Get versions for a workflow.

                     Parameters
                            workflow_id (str) -- Encoded workflow ID

                     Return type
                            list of dicts

                     Returns
                            Ordered list of version descriptions for this workflow

              show_workflow(workflow_id: str, version: int | None = None) -> Dict[str, Any]
                     Display information needed to run a workflow.

                     Parametersworkflow_id (str) -- Encoded workflow ID

                            • version (int) -- Workflow version to show

                     Return type
                            dict

                     Returns
                            A description of the workflow and its inputs.  For example:

                               {'id': '92c56938c2f9b315',
                                'inputs': {'23': {'label': 'Input Dataset', 'value': ''}},
                                'name': 'Simple',
                                'url': '/api/workflows/92c56938c2f9b315'}

              update_workflow(workflow_id: str, **kwargs: Any) -> Dict[str, Any]
                     Update a given workflow.

                     Parametersworkflow_id (str) -- Encoded workflow ID

                            • workflow (dict) -- dictionary representing the workflow to be updated

                            • name (str) -- New name of the workflow

                            • annotation (str) -- New annotation for the workflow

                            • menu_entry (bool) -- Whether the workflow should appear in the user's menu

                            • tags (list of str) -- Replace workflow tags with the given list

                            • published (bool) -- Whether the workflow should be published or unpublished

                     Return type
                            dict

                     Returns
                            Dictionary representing the updated workflow

   Object-oriented Galaxy API
   Client
   Wrappers
   Usage documentation
       This  page  describes some sample use cases for the Galaxy API and provides examples for these API calls.
       In addition to this page, there  are  functional  examples  of  complete  scripts  in  the  docs/examples
       directory of the BioBlend source code repository.

   Connect to a Galaxy server
       To  connect  to  a running Galaxy server, you will need an account on that Galaxy instance and an API key
       for    the    account.    Instructions    on    getting    an    API    key    can    be     found     at
       https://galaxyproject.org/develop/api/ .

       To open a connection call:

          from bioblend.galaxy import GalaxyInstance

          gi = GalaxyInstance(url='http://example.galaxy.url', key='your-API-key')

       We now have a GalaxyInstance object which allows us to interact with the Galaxy server under our account,
       and access our data. If the account is a Galaxy admin account we also will be able to use this connection
       to carry out admin actions.

   View Histories and Datasets
       Methods   for   accessing  histories  and  datasets  are  grouped  under  GalaxyInstance.histories.*  and
       GalaxyInstance.datasets.* respectively.

       To get information on the Histories currently in your account, call:

          >>> gi.histories.get_histories()
          [{'id': 'f3c2b0f3ecac9f02',
            'name': 'RNAseq_DGE_BASIC_Prep',
            'url': '/api/histories/f3c2b0f3ecac9f02'},
           {'id': '8a91dcf1866a80c2',
            'name': 'June demo',
            'url': '/api/histories/8a91dcf1866a80c2'}]

       This returns a list of dictionaries containing basic metadata, including the id and name of each History.
       In this case, we have two existing Histories in our account, 'RNAseq_DGE_BASIC_Prep' and 'June demo'.  To
       get more detailed information about a History we can pass its id to the show_history method:

          >>> gi.histories.show_history('f3c2b0f3ecac9f02', contents=False)
          {'annotation': '',
           'contents_url': '/api/histories/f3c2b0f3ecac9f02/contents',
           'id': 'f3c2b0f3ecac9f02',
           'name': 'RNAseq_DGE_BASIC_Prep',
           'nice_size': '93.5 MB',
           'state': 'ok',
           'state_details': {'discarded': 0,
                             'empty': 0,
                             'error': 0,
                             'failed_metadata': 0,
                             'new': 0,
                             'ok': 7,
                             'paused': 0,
                             'queued': 0,
                             'running': 0,
                             'setting_metadata': 0,
                             'upload': 0},
           'state_ids': {'discarded': [],
                         'empty': [],
                         'error': [],
                         'failed_metadata': [],
                         'new': [],
                         'ok': ['d6842fb08a76e351',
                                '10a4b652da44e82a',
                                '81c601a2549966a0',
                                'a154f05e3bcee26b',
                                '1352fe19ddce0400',
                                '06d549c52d753e53',
                                '9ec54455d6279cc7'],
                         'paused': [],
                         'queued': [],
                         'running': [],
                         'setting_metadata': [],
                         'upload': []}}

       This  gives us a dictionary containing the History's metadata. With contents=False (the default), we only
       get a list of ids of the datasets contained within the History; with contents=True we would get  metadata
       on each dataset. We can also directly access more detailed information on a particular dataset by passing
       its id to the show_dataset method:

          >>> gi.datasets.show_dataset('10a4b652da44e82a')
          {'data_type': 'fastqsanger',
           'deleted': False,
           'file_size': 16527060,
           'genome_build': 'dm3',
           'id': 17499,
           'metadata_data_lines': None,
           'metadata_dbkey': 'dm3',
           'metadata_sequences': None,
           'misc_blurb': '15.8 MB',
           'misc_info': 'Noneuploaded fastqsanger file',
           'model_class': 'HistoryDatasetAssociation',
           'name': 'C1_R2_1.chr4.fq',
           'purged': False,
           'state': 'ok',
           'visible': True}

   Uploading Datasets to a History
       To  upload  a  local file to a Galaxy server, you can run the upload_file method, supplying the path to a
       local file:

          >>> gi.tools.upload_file('test.txt', 'f3c2b0f3ecac9f02')
          {'implicit_collections': [],
           'jobs': [{'create_time': '2015-07-28T17:52:39.756488',
                     'exit_code': None,
                     'id': '9752b387803d3e1e',
                     'model_class': 'Job',
                     'state': 'new',
                     'tool_id': 'upload1',
                     'update_time': '2015-07-28T17:52:39.987509'}],
           'output_collections': [],
           'outputs': [{'create_time': '2015-07-28T17:52:39.331176',
                        'data_type': 'galaxy.datatypes.data.Text',
                        'deleted': False,
                        'file_ext': 'auto',
                        'file_size': 0,
                        'genome_build': '?',
                        'hda_ldda': 'hda',
                        'hid': 16,
                        'history_content_type': 'dataset',
                        'history_id': 'f3c2b0f3ecac9f02',
                        'id': '59c76a119581e190',
                        'metadata_data_lines': None,
                        'metadata_dbkey': '?',
                        'misc_blurb': None,
                        'misc_info': None,
                        'model_class': 'HistoryDatasetAssociation',
                        'name': 'test.txt',
                        'output_name': 'output0',
                        'peek': '<table cellspacing="0" cellpadding="3"></table>',
                        'purged': False,
                        'state': 'queued',
                        'tags': [],
                        'update_time': '2015-07-28T17:52:39.611887',
                        'uuid': 'ff0ee99b-7542-4125-802d-7a193f388e7e',
                        'visible': True}]}

       If files are greater than 2GB in size, they will need to be uploaded via FTP. Importing  files  from  the
       user's FTP folder can be done via running the upload tool again:

          >>> gi.tools.upload_from_ftp('test.txt', 'f3c2b0f3ecac9f02')
          {'implicit_collections': [],
           'jobs': [{'create_time': '2015-07-28T17:57:43.704394',
                     'exit_code': None,
                     'id': '82b264d8c3d11790',
                     'model_class': 'Job',
                     'state': 'new',
                     'tool_id': 'upload1',
                     'update_time': '2015-07-28T17:57:43.910958'}],
           'output_collections': [],
           'outputs': [{'create_time': '2015-07-28T17:57:43.209041',
                        'data_type': 'galaxy.datatypes.data.Text',
                        'deleted': False,
                        'file_ext': 'auto',
                        'file_size': 0,
                        'genome_build': '?',
                        'hda_ldda': 'hda',
                        'hid': 17,
                        'history_content_type': 'dataset',
                        'history_id': 'f3c2b0f3ecac9f02',
                        'id': 'a676e8f07209a3be',
                        'metadata_data_lines': None,
                        'metadata_dbkey': '?',
                        'misc_blurb': None,
                        'misc_info': None,
                        'model_class': 'HistoryDatasetAssociation',
                        'name': 'test.txt',
                        'output_name': 'output0',
                        'peek': '<table cellspacing="0" cellpadding="3"></table>',
                        'purged': False,
                        'state': 'queued',
                        'tags': [],
                        'update_time': '2015-07-28T17:57:43.544407',
                        'uuid': '2cbe8f0a-4019-47c4-87e2-005ce35b8449',
                        'visible': True}]}

   View Data Libraries
       Methods  for  accessing  Data  Libraries  are grouped under GalaxyInstance.libraries.*. Most Data Library
       methods are available to all users, but as only administrators  can  create  new  Data  Libraries  within
       Galaxy,  the create_folder and create_library methods can only be called using an API key belonging to an
       admin account.

       We can view the Data Libraries available to our account using:

          >>> gi.libraries.get_libraries()
          [{'id': '8e6f930d00d123ea',
            'name': 'RNA-seq workshop data',
            'url': '/api/libraries/8e6f930d00d123ea'},
           {'id': 'f740ab636b360a70',
            'name': '1000 genomes',
            'url': '/api/libraries/f740ab636b360a70'}]

       This gives a list of metadata dictionaries with basic information  on  each  library.  We  can  get  more
       information on a particular Data Library by passing its id to the show_library method:

          >>> gi.libraries.show_library('8e6f930d00d123ea')
          {'contents_url': '/api/libraries/8e6f930d00d123ea/contents',
           'description': 'RNA-Seq workshop data',
           'name': 'RNA-Seq',
           'synopsis': 'Data for the RNA-Seq tutorial'}

   Upload files to a Data Library
       We  can get files into Data Libraries in several ways: by uploading from our local machine, by retrieving
       from a URL, by passing the new file content directly into the method, or by importing  a  file  from  the
       filesystem on the Galaxy server.

       For instance, to upload a file from our machine we might call:

       >>> gi.libraries.upload_file_from_local_path('8e6f930d00d123ea', '/local/path/to/mydata.fastq', file_type='fastqsanger')

       Note that we have provided the id of the destination Data Library, and in this case we have specified the
       type  that  Galaxy  should assign to the new dataset. The default value for file_type is 'auto', in which
       case Galaxy will attempt to guess the dataset type.

   View Workflows
       Methods for accessing workflows are grouped under GalaxyInstance.workflows.*.

       To get information on the Workflows currently in your account, use:

          >>> gi.workflows.get_workflows()
          [{'id': 'e8b85ad72aefca86',
            'name': 'TopHat + cufflinks part 1',
            'url': '/api/workflows/e8b85ad72aefca86'},
           {'id': 'b0631c44aa74526d',
            'name': 'CuffDiff',
            'url': '/api/workflows/b0631c44aa74526d'}]

       This returns a list of metadata dictionaries. We can get the details of a particular Workflow,  including
       its steps, by passing its id to the show_workflow method:

          >>> gi.workflows.show_workflow('e8b85ad72aefca86')
          {'id': 'e8b85ad72aefca86',
           'inputs': {'252': {'label': 'Input RNA-seq fastq', 'value': ''}},
           'name': 'TopHat + cufflinks part 1',
           'steps': {'250': {'id': 250,
                             'input_steps': {'input1': {'source_step': 252,
                                                        'step_output': 'output'}},
                             'tool_id': 'tophat',
                             'type': 'tool'},
                     '251': {'id': 251,
                             'input_steps': {'input': {'source_step': 250,
                                                       'step_output': 'accepted_hits'}},
                             'tool_id': 'cufflinks',
                             'type': 'tool'},
                     '252': {'id': 252,
                             'input_steps': {},
                             'tool_id': None,
                             'type': 'data_input'}},
           'url': '/api/workflows/e8b85ad72aefca86'}

   Export or import a workflow
       Workflows  can  be exported from or imported into Galaxy. This makes it possible to archive workflows, or
       to move them between Galaxy instances.

       To export a workflow, we can call:

          >>> workflow_dict = gi.workflows.export_workflow_dict('e8b85ad72aefca86')

       This gives us a complex dictionary representing the workflow. We can import  this  dictionary  as  a  new
       workflow with:

          >>> gi.workflows.import_workflow_dict(workflow_dict)
          {'id': 'c0bacafdfe211f9a',
           'name': 'TopHat + cufflinks part 1 (imported from API)',
           'url': '/api/workflows/c0bacafdfe211f9a'}

       This  call returns a dictionary containing basic metadata on the new workflow. Since in this case we have
       imported the dictionary into the original Galaxy instance, we  now  have  a  duplicate  of  the  original
       workflow in our account:

       >>> gi.workflows.get_workflows()
       [{'id': 'c0bacafdfe211f9a',
         'name': 'TopHat + cufflinks part 1 (imported from API)',
         'url': '/api/workflows/c0bacafdfe211f9a'},
        {'id': 'e8b85ad72aefca86',
         'name': 'TopHat + cufflinks part 1',
         'url': '/api/workflows/e8b85ad72aefca86'},
        {'id': 'b0631c44aa74526d',
         'name': 'CuffDiff',
         'url': '/api/workflows/b0631c44aa74526d'}]

       Instead  of using dictionaries directly, workflows can be exported to or imported from files on the local
       disk using the export_workflow_to_local_path and import_workflow_from_local_path  methods.  See  the  API
       reference for details.

       NOTE:
          If  we  export a workflow from one Galaxy instance and import it into another, Galaxy will only run it
          without modification if it has the same versions of the tool wrappers installed.  This  is  to  ensure
          reproducibility. Otherwise, we will need to manually update the workflow to use the new tool versions.

   Invoke a workflow
       To  invoke a workflow, we need to tell Galaxy which datasets to use for which workflow inputs. We can use
       datasets from histories or data libraries.

       Examine the workflow above. We can see that it takes only one input file. That is:

       >>> wf = gi.workflows.show_workflow('e8b85ad72aefca86')
       >>> wf['inputs']
       {'252': {'label': 'Input RNA-seq fastq', 'value': ''}}

       There is one input, labelled 'Input RNA-seq fastq'. This input is passed to the Tophat tool and should be
       a fastq file. We will use the dataset we examined above, under View Histories  and  Datasets,  which  had
       name 'C1_R2_1.chr4.fq' and id '10a4b652da44e82a'.

       To  specify the inputs, we build a data map and pass this to the invoke_workflow method. This data map is
       a nested dictionary object which maps inputs to datasets. We call:

          >>> datamap = {'252': {'src':'hda', 'id':'10a4b652da44e82a'}}
          >>> gi.workflows.invoke_workflow('e8b85ad72aefca86', inputs=datamap, history_name='New output history')
          {'history': '0a7b7992a7cabaec',
           'outputs': ['33be8ad9917d9207',
                       'fbee1c2dc793c114',
                       '85866441984f9e28',
                       '1c51aa78d3742386',
                       'a68e8770e52d03b4',
                       'c54baf809e3036ac',
                       'ba0db8ce6cd1fe8f',
                       'c019e4cf08b2ac94']}

       In this case the only input id is '252' and the corresponding dataset id is '10a4b652da44e82a'.  We  have
       specified  the  dataset  source  to be 'hda' (HistoryDatasetAssociation) since the dataset is stored in a
       History. See the API reference for allowed dataset specifications. We have  also  requested  that  a  new
       History  be  created  and  used  to  store  the  results  of the run, by setting history_name='New output
       history'.

       The invoke_workflow call submits all the jobs which need to be run to the Galaxy  workflow  engine,  with
       the  appropriate  dependencies  so  that  they will run in order. The call returns immediately, so we can
       continue to submit new jobs while waiting for this workflow to execute.  invoke_workflow  returns  the  a
       dictionary describing the workflow invocation.

       If we view the output History immediately after calling invoke_workflow, we will see something like:

          >>> gi.histories.show_history('0a7b7992a7cabaec')
          {'annotation': '',
           'contents_url': '/api/histories/0a7b7992a7cabaec/contents',
           'id': '0a7b7992a7cabaec',
           'name': 'New output history',
           'nice_size': '0 bytes',
           'state': 'queued',
           'state_details': {'discarded': 0,
                             'empty': 0,
                             'error': 0,
                             'failed_metadata': 0,
                             'new': 0,
                             'ok': 0,
                             'paused': 0,
                             'queued': 8,
                             'running': 0,
                             'setting_metadata': 0,
                             'upload': 0},
           'state_ids': {'discarded': [],
                         'empty': [],
                         'error': [],
                         'failed_metadata': [],
                         'new': [],
                         'ok': [],
                         'paused': [],
                         'queued': ['33be8ad9917d9207',
                                    'fbee1c2dc793c114',
                                    '85866441984f9e28',
                                    '1c51aa78d3742386',
                                    'a68e8770e52d03b4',
                                    'c54baf809e3036ac',
                                    'ba0db8ce6cd1fe8f',
                                    'c019e4cf08b2ac94'],
                         'running': [],
                         'setting_metadata': [],
                         'upload': []}}

       In this case, because the submitted jobs have not had time to run, the output History contains 8 datasets
       in the 'queued' state and has a total size of 0 bytes. If we make this call again later we should instead
       see completed output files.

   View Users
       Methods for managing users are grouped under GalaxyInstance.users.*. User management is only available to
       Galaxy administrators, that is, the API key used to connect to Galaxy must be that of an admin account.

       To get a list of users, call:

       >>> gi.users.get_users()
       [{'email': 'userA@example.org',
         'id': '975a9ce09b49502a',
         'quota_percent': None,
         'url': '/api/users/975a9ce09b49502a'},
        {'email': 'userB@example.org',
         'id': '0193a95acf427d2c',
         'quota_percent': None,
         'url': '/api/users/0193a95acf427d2c'}]

   Using BioBlend for raw API calls
       BioBlend can be used to make HTTP requests to the Galaxy API in a more convenient way than using e.g. the
       requests  Python  library.  There  are 5 available methods corresponding to the most common HTTP methods:
       make_get_request, make_post_request, make_put_request, make_delete_request and  make_patch_request.   One
       advantage  of  using  these  methods  is  that  the  API  keys  stored  in  the  GalaxyInstance object is
       automatically added to the request.

       To make a GET request to the Galaxy API with BioBlend, call:

       >>> gi.make_get_request(gi.base_url + "/api/version").json()
       {'version_major': '19.05',
        'extra': {}}

       To make a POST request to the Galaxy API with BioBlend, call:

       >>> gi.make_post_request(gi.base_url + "/api/histories", payload={"name": "test history"})
       {'importable': False,
        'create_time': '2019-07-05T20:10:04.823716',
        'contents_url': '/api/histories/a77b3f95070d689a/contents',
        'id': 'a77b3f95070d689a',
        'size': 0, 'user_id': '5b732999121d4593',
        'username_and_slug': None,
        'annotation': None,
        'state_details': {'discarded': 0,
                          'ok': 0,
                          'failed_metadata': 0,
                          'upload': 0,
                          'paused': 0,
                          'running': 0,
                          'setting_metadata': 0,
                          'error': 0,
                          'new': 0,
                          'queued': 0,
                          'empty': 0},
        'state': 'new',
        'empty': True,
        'update_time': '2019-07-05T20:10:04.823742',
        'tags': [],
        'deleted': False,
        'genome_build': None,
        'slug': None,
        'name': 'test history',
        'url': '/api/histories/a77b3f95070d689a',
        'state_ids': {'discarded': [],
                      'ok': [],
                      'failed_metadata': [],
                      'upload': [],
                      'paused': [],
                      'running': [],
                      'setting_metadata': [],
                      'error': [],
                      'new': [],
                      'queued': [],
                      'empty': []},
        'published': False,
        'model_class': 'History',
        'purged': False}

   Toolshed API
       API used to interact with the Galaxy Toolshed, including repository management.

   API documentation for interacting with the Galaxy Toolshed
   ToolShedInstance
   Categories
   Repositories
   Tools

CONFIGURATION

       BioBlend allows library-wide configuration to be set in external files.  These configuration files can be
       used to specify access keys, for example.

   Configuration documents for BioBlend
   BioBlend
       exception bioblend.ConnectionError(message: str, body: bytes | str | None = None, status_code: int | None
       = None)
              An exception class that is raised when unexpected HTTP responses come back.

              Should make it easier to debug when strange HTTP things happen such as a proxy server  getting  in
              the way of the request etc.  @see: body attribute to see the content of the http response

       class bioblend.NullHandler(level=0)
              Initializes the instance - basically setting the formatter to None and the filter list to empty.

              emit(record: LogRecord) -> None
                     Do whatever it takes to actually log the specified logging record.

                     This   version   is   intended   to   be   implemented   by  subclasses  and  so  raises  a
                     NotImplementedError.

       exception bioblend.TimeoutException

       bioblend.get_version() -> str
              Returns a string with the current version of the library (e.g., "0.2.0")

       bioblend.init_logging() -> None
              Initialize BioBlend's logging from a configuration file.

       bioblend.set_file_logger(name: str, filepath: str, level: int | str = 20, format_string: str | None =
       None) -> None

       bioblend.set_stream_logger(name: str, level: int | str = 10, format_string: str | None = None) -> None

   Config
       class bioblend.config.Config(path: str | None = None, fp: IO[str] | None = None, do_load: bool = True)
              BioBlend allows library-wide configuration to be set in external files.  These configuration files
              can be used to specify access keys, for example.  By default we use two locations for the BioBlend
              configurations:

              • System wide: /etc/bioblend.cfg

              • Individual user: ~/.bioblend (which works on both Windows and Unix)

TESTING

       If you would like to do more than just a mock test, you need to point BioBlend to an instance of  Galaxy.
       Do so by exporting the following two variables:

          $ export BIOBLEND_GALAXY_URL=http://127.0.0.1:8080
          $ export BIOBLEND_GALAXY_API_KEY=<API key>

       The unit tests, stored in the tests folder, can be run using pytest. From the project root:

          $ pytest

GETTING HELP

       If  you have run into issues, found a bug, or can't seem to find an answer to your question regarding the
       use and functionality of BioBlend, please use the Github Issues page to ask your question.

RELATED DOCUMENTATION

       Links to other documentation and libraries relevant to this library:

          • Galaxy API documentationBlend4j: Galaxy API wrapper for Java

          • clj-blend: Galaxy API wrapper for Clojure

INDICES AND TABLES

IndexModule IndexSearch Page

AUTHOR

       Galaxy Project

COPYRIGHT

       2012-2024, Galaxy Project

1.2.0                                             Jan 06, 2024                                       BIOBLEND(1)