Provided by: libmath-gsl-perl_0.44-1build3_amd64 bug

NAME

       Math::GSL::Wavelet - 1-D (Real) Wavelets

SYNOPSIS

           use Math::GSL::Wavelet qw/:all/;

DESCRIPTION

       "gsl_wavelet_alloc($T, $k)"
        This  function  allocates  and  initializes  a  wavelet  object  of type $T, where $T must be one of the
        constants below. The parameter $k selects the specific member of the wavelet family.

       gsl_wavelet_free($w)
        This function frees the wavelet object $w.

       "gsl_wavelet_name"
       gsl_wavelet_workspace_alloc($n)
        This function allocates a workspace for the discrete wavelet transform.  To  perform  a  one-dimensional
        transform  on  $n  elements,  a workspace of size $n must be provided. For two-dimensional transforms of
        $n-by-$n matrices it is sufficient to allocate a workspace of size $n, since the transform  operates  on
        individual rows and columns.

       gsl_wavelet_workspace_free($work)
        This function frees the allocated workspace work.

       "gsl_wavelet_transform"
       "gsl_wavelet_transform_forward($w, $data, $stride, $n, $work)"
        This  functions compute in-place forward discrete wavelet transforms of length $n with stride $stride on
        the array $data. The length of the transform $n  is  restricted  to  powers  of  two.  For  the  forward
        transform,  the  elements  of  the  original array are replaced by the discrete wavelet transform f_i ->
        w_{j,k} in a packed triangular storage layout, where j is the index of the level j = 0 ...  J-1 and k is
        the index of the coefficient within each level, k = 0 ... (2^j)-1.  The total number of levels  is  J  =
        \log_2(n). The output data has the following form,

            (s_{-1,0}, d_{0,0}, d_{1,0}, d_{1,1}, d_{2,0}, ..., d_{j,k}, ..., d_{J-1,2^{J-1}-1})

        where  the  first  element  is  the  smoothing coefficient s_{-1,0}, followed by the detail coefficients
        d_{j,k} for each level j. The backward transform inverts these coefficients to obtain the original data.
        These functions return a status of $GSL_SUCCESS upon successful completion. $GSL_EINVAL is  returned  if
        $n is not an integer power of 2 or if insufficient workspace is provided.

       "gsl_wavelet_transform_inverse"

       This  module  also  contains  the  following constants with their valid k value for the gsl_wavelet_alloc
       function :

       $gsl_wavelet_daubechies
       $gsl_wavelet_daubechies_centered

       This is the Daubechies wavelet family of maximum  phase  with  k/2  vanishing  moments.  The  implemented
       wavelets are k=4, 6, ..., 20, with k even.

       $gsl_wavelet_haar
       $gsl_wavelet_haar_centered

       This is the Haar wavelet. The only valid choice of k for the Haar wavelet is k=2.

       $gsl_wavelet_bspline
       $gsl_wavelet_bspline_centered

       This  is the biorthogonal B-spline wavelet family of order (i,j). The implemented values of k = 100*i + j
       are 103, 105, 202, 204, 206, 208, 301, 303, 305 307, 309.

AUTHORS

       Jonathan "Duke" Leto <jonathan@leto.net> and Thierry Moisan <thierry.moisan@gmail.com>

COPYRIGHT AND LICENSE

       Copyright (C) 2008-2023 Jonathan "Duke" Leto and Thierry Moisan

       This program is free software; you can redistribute it and/or modify it under  the  same  terms  as  Perl
       itself.

perl v5.38.2                                       2024-03-31                            Math::GSL::Wavelet(3pm)