Provided by: freebsd-manpages_12.2-1_all 

NAME
vlan — IEEE 802.1Q VLAN network interface
SYNOPSIS
To compile this driver into the kernel, place the following line in your kernel configuration file:
device vlan
Alternatively, to load the driver as a module at boot time, place the following line in loader.conf(5):
if_vlan_load="YES"
DESCRIPTION
The vlan driver demultiplexes frames tagged according to the IEEE 802.1Q standard into logical vlan
network interfaces, which allows routing/bridging between multiple VLANs through a single switch trunk
port.
Each vlan interface is created at runtime using interface cloning. This is most easily done with the
ifconfig(8) create command or using the cloned_interfaces variable in rc.conf(5).
To function, a vlan interface must be assigned a parent interface and numeric VLAN tag using ifconfig(8).
A single parent can be assigned to multiple vlan interfaces provided they have different tags. The
parent interface is likely to be an Ethernet card connected to a properly configured switch port. The
VLAN tag should match one of those set up in the switched network.
vlan initially assumes the same minimum length for tagged and untagged frames. This mode is selected by
setting the sysctl(8) variable net.link.vlan.soft_pad to 0 (default). However, there are network devices
that fail to adjust frame length when it falls below the allowed minimum due to untagging. Such devices
should be able to interoperate with vlan after changing the value of net.link.vlan.soft_pad to 1. In the
latter mode, vlan will pad short frames before tagging them so that their length is not less than the
minimum value after untagging by the non-compliant devices.
HARDWARE
The vlan driver supports efficient operation over parent interfaces that can provide help in processing
VLANs. Such interfaces are automatically recognized by their capabilities. Depending on the level of
sophistication found in a physical interface, it may do full VLAN processing or just be able to receive
and transmit long frames (up to 1522 bytes including an Ethernet header and FCS). The capabilities may
be user-controlled by the respective parameters to ifconfig(8), vlanhwtag, and vlanmtu. However, a
physical interface is not obliged to react to them: It may have either capability enabled permanently
without a way to turn it off. The whole issue is very specific to a particular device and its driver.
At present, these devices are capable of full VLAN processing in hardware: ae(4), age(4), alc(4), ale(4),
bce(4), bge(4), bxe(4), cxgb(4), cxgbe(4), em(4), igb(4), ixgbe(4), jme(4), liquidio(4), msk(4), mxge(4),
nge(4), re(4), sge(4), stge(4), ti(4), txp(4), and vge(4).
Other Ethernet interfaces can run VLANs using software emulation in the vlan driver. However, some lack
the capability of transmitting and receiving long frames. Assigning such an interface as the parent to
vlan will result in a reduced MTU on the corresponding vlan interfaces. In the modern Internet, this is
likely to cause tcp(4) connectivity problems due to massive, inadequate icmp(4) filtering that breaks the
Path MTU Discovery mechanism.
These interfaces natively support long frames for vlan: axe(4), bfe(4), cas(4), dc(4), et(4), fwe(4),
fxp(4), gem(4), hme(4), le(4), nfe(4), rl(4), sf(4), sis(4), sk(4), ste(4), tl(4), tx(4), vr(4), vte(4),
and xl(4).
The vlan driver automatically recognizes devices that natively support long frames for vlan use and
calculates the appropriate frame MTU based on the capabilities of the parent interface. Some other
interfaces not listed above may handle long frames, but they do not advertise this ability. The MTU
setting on vlan can be corrected manually if used in conjunction with such a parent interface.
SEE ALSO
ifconfig(8), sysctl(8)
Debian May 8, 2018 VLAN(4)