Provided by: libmath-prime-util-perl_0.73-2build1_amd64 bug

NAME

       Math::Prime::Util - Utilities related to prime numbers, including fast sieves and factoring

VERSION

       Version 0.73

SYNOPSIS

         # Nothing is exported by default.  List the functions, or use :all.
         use Math::Prime::Util ':all';  # import all functions

         # The ':rand' tag replaces srand and rand (not done by default)
         use Math::Prime::Util ':rand';  # import srand, rand, irand, irand64

         # Get a big array reference of many primes
         my $aref = primes( 100_000_000 );

         # All the primes between 5k and 10k inclusive
         $aref = primes( 5_000, 10_000 );

         # If you want them in an array instead
         my @primes = @{primes( 500 )};

         # You can do something for every prime in a range.  Twin primes to 10k:
         forprimes { say if is_prime($_+2) } 10000;
         # Or for the composites in a range
         forcomposites { say if is_strong_pseudoprime($_,2) } 10000, 10**6;

         # For non-bigints, is_prime and is_prob_prime will always be 0 or 2.
         # They return 0 (composite), 2 (prime), or 1 (probably prime)
         my $n = 1000003;  # for example
         say "$n is prime"  if is_prime($n);
         say "$n is ", (qw(composite maybe_prime? prime))[is_prob_prime($n)];

         # Strong pseudoprime test with multiple bases, using Miller-Rabin
         say "$n is a prime or 2/7/61-psp" if is_strong_pseudoprime($n, 2, 7, 61);

         # Standard and strong Lucas-Selfridge, and extra strong Lucas tests
         say "$n is a prime or lpsp"   if is_lucas_pseudoprime($n);
         say "$n is a prime or slpsp"  if is_strong_lucas_pseudoprime($n);
         say "$n is a prime or eslpsp" if is_extra_strong_lucas_pseudoprime($n);

         # step to the next prime (returns 0 if not using bigints and we'd overflow)
         $n = next_prime($n);

         # step back (returns undef if given input 2 or less)
         $n = prev_prime($n);

         # Return Pi(n) -- the number of primes E<lt>= n.
         my $primepi = prime_count( 1_000_000 );
         $primepi = prime_count( 10**14, 10**14+1000 );  # also does ranges

         # Quickly return an approximation to Pi(n)
         my $approx_number_of_primes = prime_count_approx( 10**17 );

         # Lower and upper bounds.  lower <= Pi(n) <= upper for all n
         die unless prime_count_lower($n) <= prime_count($n);
         die unless prime_count_upper($n) >= prime_count($n);

         # Return p_n, the nth prime
         say "The ten thousandth prime is ", nth_prime(10_000);

         # Return a quick approximation to the nth prime
         say "The one trillionth prime is ~ ", nth_prime_approx(10**12);

         # Lower and upper bounds.   lower <= nth_prime(n) <= upper for all n
         die unless nth_prime_lower($n) <= nth_prime($n);
         die unless nth_prime_upper($n) >= nth_prime($n);

         # Get the prime factors of a number
         my @prime_factors = factor( $n );

         # Return ([p1,e1],[p2,e2], ...) for $n = p1^e1 * p2*e2 * ...
         my @pe = factor_exp( $n );

         # Get all divisors other than 1 and n
         my @divisors = divisors( $n );
         # Or just apply a block for each one
         my $sum = 0; fordivisors  { $sum += $_ + $_*$_ }  $n;

         # Euler phi (Euler's totient) on a large number
         use bigint;  say euler_phi( 801294088771394680000412 );
         say jordan_totient(5, 1234);  # Jordan's totient

         # Moebius function used to calculate Mertens
         $sum += moebius($_) for (1..200); say "Mertens(200) = $sum";
         # Mertens function directly (more efficient for large values)
         say mertens(10_000_000);
         # Exponential of Mangoldt function
         say "lamba(49) = ", log(exp_mangoldt(49));
         # Some more number theoretical functions
         say liouville(4292384);
         say chebyshev_psi(234984);
         say chebyshev_theta(92384234);
         say partitions(1000);
         # Show all prime partitions of 25
         forpart { say "@_" unless scalar grep { !is_prime($_) } @_ } 25;
         # List all 3-way combinations of an array
         my @cdata = qw/apple bread curry donut eagle/;
         forcomb { say "@cdata[@_]" } @cdata, 3;
         # or all permutations
         forperm { say "@cdata[@_]" } @cdata;

         # divisor sum
         my $sigma  = divisor_sum( $n );       # sum of divisors
         my $sigma0 = divisor_sum( $n, 0 );    # count of divisors
         my $sigmak = divisor_sum( $n, $k );
         my $sigmaf = divisor_sum( $n, sub { log($_[0]) } ); # arbitrary func

         # primorial n#, primorial p(n)#, and lcm
         say "The product of primes below 47 is ",     primorial(47);
         say "The product of the first 47 primes is ", pn_primorial(47);
         say "lcm(1..1000) is ", consecutive_integer_lcm(1000);

         # Ei, li, and Riemann R functions
         my $ei   = ExponentialIntegral($x);   # $x a real: $x != 0
         my $li   = LogarithmicIntegral($x);   # $x a real: $x >= 0
         my $R    = RiemannR($x);              # $x a real: $x > 0
         my $Zeta = RiemannZeta($x);           # $x a real: $x >= 0

         # Precalculate a sieve, possibly speeding up later work.
         prime_precalc( 1_000_000_000 );

         # Free any memory used by the module.
         prime_memfree;

         # Alternate way to free.  When this leaves scope, memory is freed.
         my $mf = Math::Prime::Util::MemFree->new;

         # Random primes
         my($rand_prime);
         $rand_prime = random_prime(1000);        # random prime <= limit
         $rand_prime = random_prime(100, 10000);  # random prime within a range
         $rand_prime = random_ndigit_prime(6);    # random 6-digit prime
         $rand_prime = random_nbit_prime(128);    # random 128-bit prime
         $rand_prime = random_strong_prime(256);  # random 256-bit strong prime
         $rand_prime = random_maurer_prime(256);  # random 256-bit provable prime
         $rand_prime = random_shawe_taylor_prime(256);  # as above

DESCRIPTION

       A module for number theory in Perl.  This includes prime sieving, primality tests, primality proofs,
       integer factoring, counts / bounds / approximations for primes, nth primes, and twin primes, random prime
       generation, and much more.

       This module is the fastest on CPAN for almost all operations it supports.  This includes Math::Prime::XS,
       Math::Prime::FastSieve, Math::Factor::XS, Math::Prime::TiedArray, Math::Big::Factors, Math::Factoring,
       and Math::Primality (when the GMP module is available).  For numbers in the 10-20 digit range, it is
       often orders of magnitude faster.  Typically it is faster than Math::Pari for 64-bit operations.

       All operations support both Perl UV's (32-bit or 64-bit) and bignums.  If you want high performance with
       big numbers (larger than Perl's native 32-bit or 64-bit size), you should install Math::Prime::Util::GMP
       and Math::BigInt::GMP.  This will be a recurring theme throughout this documentation -- while all bignum
       operations are supported in pure Perl, most methods will be much slower than the C+GMP alternative.

       The module is thread-safe and allows concurrency between Perl threads while still sharing a prime cache.
       It is not itself multi-threaded.  See the Limitations section if you are using Win32 and threads in your
       program.  Also note that Math::Pari is not thread-safe (and will crash as soon as it is loaded in
       threads), so if you use Math::BigInt::Pari rather than Math::BigInt::GMP or the default backend, things
       will go pear-shaped.

       Two scripts are also included and installed by default:

       •   primes.pl  displays  primes  between  start  and  end  values  or  expressions, with many options for
           filtering (e.g. twin, safe, circular, good, lucky, etc.).  Use "--help" to see all the options.

       •   factor.pl operates similar to the GNU "factor" program.  It supports bigint and expression inputs.

ENVIRONMENT VARIABLES

       There are two environment variables that affect operation.  These are typically used  for  validation  of
       the different methods or to simulate systems that have different support.

   MPU_NO_XS
       If  set  to 1 then everything is run in pure Perl.  No C functions are loaded or used, as XSLoader is not
       even called.  All top-level XS functions are replaced by a pure  Perl  layer  (the  PPFE.pm  module  that
       supplies a "Pure Perl Front End").

       Caveat:  This  does  not  change whether the GMP backend is used.  For as much pure Perl as possible, you
       will need to set both variables.

       If this variable is not set or set to anything other than 1, the module operates normally.

   MPU_NO_GMP
       If set to 1 then the Math::Prime::Util::GMP backend is not loaded, and operation will be exactly as if it
       was not installed.

       If this variable is not set or set to anything other than 1, the module operates normally.

BIGNUM SUPPORT

       By default all functions support bignums.  For performance, you should install and use  Math::BigInt::GMP
       or Math::BigInt::Pari, and Math::Prime::Util::GMP.

       If you are using bigints, here are some performance suggestions:

       •   Install a recent version of Math::Prime::Util::GMP, as that will vastly increase the speed of many of
           the  functions.   This  does require the GMP <http://gmplib.org> library be installed on your system,
           but  this  increasingly  comes  pre-installed  or  easily  available  using  the  OS  vendor  package
           installation tool.

       •   Install  and  use Math::BigInt::GMP or Math::BigInt::Pari, then use "use bigint try => 'GMP,Pari'" in
           your script, or on the command line "-Mbigint=lib,GMP".  Large modular exponentiation is much  faster
           using  the  GMP  or  Pari backends, as are the math and approximation functions when called with very
           large inputs.

       •   I have run these functions on many versions of Perl, and  my  experience  is  that  if  you're  using
           anything  older  than Perl 5.14, I would recommend you upgrade if you are using bignums a lot.  There
           are some brittle behaviors on 5.12.4 and earlier with  bignums.   For  example,  the  default  BigInt
           backend  in  older  versions  of  Perl  will sometimes convert small results to doubles, resulting in
           corrupted output.

PRIMALITY TESTING

       This module provides three functions for general primality  testing,  as  well  as  numerous  specialized
       functions.   The  three  main  functions  are:  "is_prob_prime"  and  "is_prime"  for  general  use,  and
       "is_provable_prime"  for  proofs.   For  inputs  below  "2^64"  the  functions  are  identical  and  fast
       deterministic  testing is performed.  That is, the results will always be correct and should take at most
       a few microseconds for any input.  This is hundreds to thousands of times faster than other CPAN modules.
       For  inputs  larger  than  "2^64",  an  extra-strong  BPSW  test   <http://en.wikipedia.org/wiki/Baillie-
       PSW_primality_test> is used.  See the "PRIMALITY TESTING NOTES" section for more discussion.

FUNCTIONS

   is_prime
         print "$n is prime" if is_prime($n);

       Returns  0  is  the number is composite, 1 if it is probably prime, and 2 if it is definitely prime.  For
       numbers smaller than "2^64" it will only return 0 (composite) or 2 (definitely prime), as this range  has
       been  exhaustively  tested  and has no counterexamples.  For larger numbers, an extra-strong BPSW test is
       used.  If Math::Prime::Util::GMP is installed, some additional primality tests are also performed, and  a
       quick attempt is made to perform a primality proof, so it will return 2 for many other inputs.

       Also  see the "is_prob_prime" function, which will never do additional tests, and the "is_provable_prime"
       function which will construct a proof that the input is number prime and returns 2 for almost all  primes
       (at the expense of speed).

       For  native  precision numbers (anything smaller than "2^64", all three functions are identical and use a
       deterministic set of tests (selected Miller-Rabin bases or BPSW).  For larger inputs both "is_prob_prime"
       and "is_prime" return probable prime results using the extra-strong Baillie-PSW test, which  has  had  no
       counterexample found since it was published in 1980.

       For  cryptographic  key  generation,  you may want even more testing for probable primes (NIST recommends
       some   additional   M-R   tests).    This   can    be    done    using    a    different    test    (e.g.
       "is_frobenius_underwood_pseudoprime")   or   using   additional   M-R   tests   with  random  bases  with
       "miller_rabin_random".   Even  better,  make   sure   Math::Prime::Util::GMP   is   installed   and   use
       "is_provable_prime" which should be reasonably fast for sizes under 2048 bits.  Another possibility is to
       use  "random_maurer_prime" in Math::Prime::Util or "random_shawe_taylor_prime" in Math::Prime::Util which
       construct random provable primes.

   primes
       Returns all the primes between the lower and upper limits (inclusive), with a lower limit of 2 if none is
       given.

       An array reference is returned (with large lists this is much faster and uses less memory than  returning
       an array directly).

         my $aref1 = primes( 1_000_000 );
         my $aref2 = primes( 1_000_000_000_000, 1_000_000_001_000 );

         my @primes = @{ primes( 500 ) };

         print "$_\n" for @{primes(20,100)};

       Sieving will be done if required.  The algorithm used will depend on the range and whether a sieve result
       already exists.  Possibilities include primality testing (for very small ranges), a Sieve of Eratosthenes
       using wheel factorization, or a segmented sieve.

   next_prime
         $n = next_prime($n);

       Returns  the  next  prime  greater  than  the input number.  The result will be a bigint if it can not be
       exactly represented in the native int type (larger than  "4,294,967,291"  in  32-bit  Perl;  larger  than
       "18,446,744,073,709,551,557" in 64-bit).

   prev_prime
         $n = prev_prime($n);

       Returns  the  prime  preceding  the  input  number (i.e. the largest prime that is strictly less than the
       input).  "undef" is returned if the input is 2 or lower.

       The behavior in various programs of the previous  prime  function  is  varied.   Pari/GP  and  Math::Pari
       returns  the  input  if it is prime, as does "nearest_le" in Math::Prime::FastSieve.  When given an input
       such that the return value will be the first  prime  less  than  2,  Math::Prime::FastSieve,  Math::Pari,
       Pari/GP,  and  older  versions  of  MPU  will  return 0.  Math::Primality and the current MPU will return
       "undef".  WolframAlpha returns "-2".  Maple gives a range error.

   forprimes
         forprimes { say } 100,200;                  # print primes from 100 to 200

         $sum=0;  forprimes { $sum += $_ } 100000;   # sum primes to 100k

         forprimes { say if is_prime($_+2) } 10000;  # print twin primes to 10k

       Given a block and either an end count or a start and end pair, calls the block  for  each  prime  in  the
       range.  Compared to getting a big array of primes and iterating through it, this is more memory efficient
       and  perhaps more convenient.  This will almost always be the fastest way to loop over a range of primes.
       Nesting and use in threads are allowed.

       Math::BigInt objects may be used for the range.

       For   some   uses   an   iterator   ("prime_iterator",   "prime_iterator_object")   or   a   tied   array
       (Math::Prime::Util::PrimeArray)  may  be  more convenient.  Objects can be passed to functions, and allow
       early loop exits.

   forcomposites
         forcomposites { say } 1000;
         forcomposites { say } 2000,2020;

       Given a block and either an end number or a start and end pair, calls the block for each composite in the
       inclusive range.  The composites, OEIS A002808 <http://oeis.org/A002808>, are the numbers greater than  1
       which are not prime:  "4, 6, 8, 9, 10, 12, 14, 15, ...".

   foroddcomposites
       Similar   to  "forcomposites",  but  skipping  all  even  numbers.   The  odd  composites,  OEIS  A071904
       <http://oeis.org/A071904>, are the numbers greater than 1 which are not prime and not divisible  by  two:
       "9, 15, 21, 25, 27, 33, 35, ...".

   forsemiprimes
       Similar  to  "forcomposites",  but only giving composites with exactly two factors.  The semiprimes, OEIS
       A001358 <http://oeis.org/A001358>, are the products of two primes: "4, 6, 9, 10,  14,  15,  21,  22,  25,
       ...".

       This is essentially equivalent to:

         forcomposites { if (is_semiprime($_)) { ... } }

   forfactored
         forfactored { say "$_: @_"; } 100;

       Given  a  block  and  either  an  end  number  or  start/end pair, calls the block for each number in the
       inclusive range.  $_ is set to the number while @_ holds the factors.  Especially  for  small  inputs  or
       large ranges, This can be faster than calling "factor" on each sequential value.

       Similar  to  the  arrays returned by similar functions such as "forpart", the values in @_ are read-only.
       Any attempt to modify them will result in undefined behavior.

       This corresponds to the Pari/GP 2.10 "forfactored" function.

   forsquarefree
       Similar to "forfactored", but skipping numbers in the range that have  a  repeated  factor.   Inside  the
       block, the moebius function can be cheaply computed as "((scalar(@_) & 1) ? -1 : 1)" or similar.

       This corresponds to the Pari/GP 2.10 "forsquarefree" function.

   fordivisors
         fordivisors { $prod *= $_ } $n;

       Given  a  block  and a non-negative number "n", the block is called with $_ set to each divisor in sorted
       order.  Also see "divisor_sum".

   forpart
         forpart { say "@_" } 25;           # unrestricted partitions
         forpart { say "@_" } 25,{n=>5}     # ... with exactly 5 values
         forpart { say "@_" } 25,{nmax=>5}  # ... with <=5 values

       Given a non-negative number "n", the block is called with  @_  set  to  the  array  of  additive  integer
       partitions.   The  operation  is  very  similar  to  the  "forpart" function in Pari/GP 2.6.x, though the
       ordering is different.  The ordering is lexicographic.   Use  "partitions"  to  get  just  the  count  of
       unrestricted partitions.

       An  optional  hash  reference  may  be given to produce restricted partitions.  Each value must be a non-
       negative integer.  The allowable keys are:

         n       restrict to exactly this many values
         amin    all elements must be at least this value
         amax    all elements must be at most this value
         nmin    the array must have at least this many values
         nmax    the array must have at most this many values
         prime   all elements must be prime (non-zero) or non-prime (zero)

       Like forcomb and forperm, the partition return values are read-only.  Any attempt  to  modify  them  will
       result in undefined behavior.

   forcomp
       Similar to "forpart", but iterates over integer compositions rather than partitions.  This can be thought
       of  as  all  ordering  of  partitions,  or  alternately  partitions may be viewed as an ordered subset of
       compositions.  The ordering is lexicographic.  All options from "forpart" may be used.

       The number of unrestricted compositions of "n" is "2^(n-1)".

   forcomb
       Given non-negative arguments "n" and "k", the block is called with @_ set to the  "k"  element  array  of
       values  from  0  to  "n-1"  representing  the  combinations in lexicographical order.  While the binomial
       function gives the total number, this function can be used to enumerate the choices.

       Rather than give a data array as input, an integer is used for "n".  A convenient way  to  map  to  array
       elements is:

         forcomb { say "@data[@_]" } @data, 3;

       where  the  block  maps the combination array @_ to array values, the argument for "n" is given the array
       since it will be evaluated as a scalar and hence give the size, and the argument for "k" is  the  desired
       size of the combinations.

       Like  forpart and forperm, the index return values are read-only.  Any attempt to modify them will result
       in undefined behavior.

       If the second argument "k" is not supplied, then all k-subsets are returned starting  with  the  smallest
       set  "k=0" and continuing to "k=n".  Each k-subset is in lexicographical order.  This is the power set of
       "n".

       This corresponds to the Pari/GP 2.10 "forsubset" function.

   forperm
       Given non-negative argument "n", the block is called with @_ set to the "k" element array of values  from
       0 to "n-1" representing permutations in lexicographical order.  The total number of calls will be "n!".

       Rather  than  give  a  data array as input, an integer is used for "n".  A convenient way to map to array
       elements is:

         forperm { say "@data[@_]" } @data;

       where the block maps the permutation array @_ to array values, and the argument  for  "n"  is  given  the
       array since it will be evaluated as a scalar and hence give the size.

       Like  forpart and forcomb, the index return values are read-only.  Any attempt to modify them will result
       in undefined behavior.

   forderange
       Similar to forperm, but iterates over derangements.  This is the set of permutations skipping  any  which
       maps an element to its original position.

   formultiperm
         # Show all anagrams of 'serpent':
         formultiperm { say join("",@_) } [split(//,"serpent")];

       Similar to "forperm" but takes an array reference as an argument.  This is treated as a multiset, and the
       block  will  be  called  with each multiset permutation.  While the standard permutation iterator takes a
       scalar and returns index permutations, this takes the set itself.

       If all values are unique, then the results will be the same as a standard  permutation.   Otherwise,  the
       results  will  be  similar  to  a  standard permutation removing duplicate entries.  While generating all
       permutations and filtering out duplicates works, it is very slow for large sets.  This iterator  will  be
       much more efficient.

       There  is  no  ordering  requirement for the input array reference.  The results will be in lexicographic
       order.

   forsetproduct
         forsetproduct { say "@_" } [1,2,3],[qw/a b c/],[qw/@ $ !/];

       Takes zero or more array references as arguments and  iterates  over  the  set  product  (i.e.  Cartesian
       product  or  cross  product)  of the lists.  The given subroutine is repeatedly called with @_ set to the
       current list.  Since no de-duplication is done, this is not literally a "set" product.

       While zero or one array references are valid, the result is not very interesting.  If any array reference
       is empty, the product is empty, so no subroutine calls are performed.

       The subroutine is given an array whose values are aliased to the inputs, and are not  set  to  read-only.
       Hence modifying the array inside the subroutine will cause side-effects.

       As with other iterators, the "lastfor" function will cause an early exit.

   lastfor
         forprimes { lastfor,return if $_ > 1000; $sum += $_; } 1e9;

       Calling  lastfor  requests  that  the  current  for... loop stop after this call.  Ideally this would act
       exactly like a "last" inside a loop, but technical reasons mean it does not exit the block  early,  hence
       one typically adds a "return" if needed.

   prime_iterator
         my $it = prime_iterator;
         $sum += $it->() for 1..100000;

       Returns  a  closure-style iterator.  The start value defaults to the first prime (2) but an initial value
       may be given as an argument, which will result in the first value returned being the next  prime  greater
       than or equal to the argument.  For example, this:

         my $it = prime_iterator(200);  say $it->();  say $it->();

       will return 211 followed by 223, as those are the next primes >= 200.  On each call, the iterator returns
       the current value and increments to the next prime.

       Other  options  include "forprimes" (more efficiency, less flexibility), Math::Prime::Util::PrimeIterator
       (an iterator with more functionality), or Math::Prime::Util::PrimeArray (a tied array).

   prime_iterator_object
         my $it = prime_iterator_object;
         while ($it->value < 100) { say $it->value; $it->next; }
         $sum += $it->iterate for 1..100000;

       Returns a Math::Prime::Util::PrimeIterator object.  A shortcut that loads the package  if  needed,  calls
       new,  and  returns the object.  See the documentation for that package for details.  This object has more
       features than the simple one above (e.g. the iterator is  bi-directional),  and  also  handles  iterating
       across bigints.

   prime_count
         my $primepi = prime_count( 1_000 );
         my $pirange = prime_count( 1_000, 10_000 );

       Returns  the  Prime  Count  function  Pi(n), also called "primepi" in some math packages.  When given two
       arguments, it returns the inclusive count of primes  between  the  ranges.   E.g.  "(13,17)"  returns  2,
       "(14,17)" and "(13,16)" return 1, "(14,16)" returns 0.

       The  current  implementation decides based on the ranges whether to use a segmented sieve with a fast bit
       count, or the extended LMO algorithm.  The former is preferred for small sizes as well as  small  ranges.
       The latter is much faster for large ranges.

       The  segmented  sieve  is  very  memory  efficient  and  is  quite fast even with large base values.  Its
       complexity is approximately "O(sqrt(a) + (b-a))", where the first term is typically negligible  below  "~
       10^11".   Memory  use is proportional only to sqrt(a), with total memory use under 1MB for any base under
       "10^14".

       The extended LMO method has complexity approximately "O(b^(2/3)) + O(a^(2/3))", and also uses low memory.
       A calculation of "Pi(10^14)" completes in a  few  seconds,  "Pi(10^15)"  in  well  under  a  minute,  and
       "Pi(10^16)"  in  about  one  minute.   In  contrast, even parallel primesieve would take over a week on a
       similar machine to determine "Pi(10^16)".

       Also see the function "prime_count_approx" which gives a very good approximation to the prime count,  and
       "prime_count_lower"  and  "prime_count_upper"  which  give tight bounds to the actual prime count.  These
       functions return quickly for any input, including bigints.

   prime_count_upper
   prime_count_lower
         my $lower_limit = prime_count_lower($n);
         my $upper_limit = prime_count_upper($n);
         #   $lower_limit  <=  prime_count(n)  <=  $upper_limit

       Returns an upper or lower bound on the number of primes below the input  number.   These  are  analytical
       routines,  so  will  take  a fixed amount of time and no memory.  The actual "prime_count" will always be
       equal to or between these numbers.

       A common place these would be used is sizing an array to hold the first $n primes.  It may  be  desirable
       to use a bit more memory than is necessary, to avoid calling "prime_count".

       These  routines  use  verified  tight  limits  below  a range at least "2^35".  For larger inputs various
       methods are used including Dusart (2010), Büthe (2014,2015), and  Axler  (2014).   These  bounds  do  not
       assume  the  Riemann  Hypothesis.   If  the  configuration  option "assume_rh" has been set (it is off by
       default), then the Schoenfeld (1976) bounds can be used for very large values.

   prime_count_approx
         print "there are about ",
               prime_count_approx( 10 ** 18 ),
               " primes below one quintillion.\n";

       Returns an approximation to the "prime_count" function, without  having  to  generate  any  primes.   For
       values  under  "10^36"  this  uses the Riemann R function, which is quite accurate: an error of less than
       "0.0005%" is typical for input values over "2^32", and decreases as the input gets larger.

       A slightly faster but much less accurate answer can be obtained by averaging the upper and lower bounds.

   twin_primes
       Returns the lesser of twin primes between the lower and upper limits (inclusive), with a lower limit of 2
       if none is given.  This is OEIS A001359 <http://oeis.org/A001359>.  Given a twin prime pair "(p,q)"  with
       "q  =  p  + 2", "p prime", and <q prime>, this function uses "p" to represent the pair.  Hence the bounds
       need to include "p", and the returned list will have "p" but not "q".

       This works just like the "primes" function, though  only  the  first  primes  of  twin  prime  pairs  are
       returned.  Like that function, an array reference is returned.

   twin_prime_count
       Similar  to  prime  count,  but  returns the count of twin primes (primes "p" where "p+2" is also prime).
       Takes either a single number indicating a count from 2 to the  argument,  or  two  numbers  indicating  a
       range.

       The  primes  being counted are the first value, so a range of "(3,5)" will return a count of two, because
       both 3 and 5 are counted as twin primes.  A range of "(12,13)" will  return  a  count  of  zero,  because
       neither  "12+2" nor "13+2" are prime.  In contrast, "primesieve" requires all elements of a constellation
       to be within the range to be counted, so would return one for the first example (5 is not counted because
       its pair 7 is not in the range).

       There is no useful formula known for this, unlike prime counts.  We sieve  for  the  answer,  using  some
       small table acceleration.

   twin_prime_count_approx
       Returns an approximation to the twin prime count of "n".  This returns quickly and has a very small error
       for  large  values.  The method used is conjecture B of Hardy and Littlewood 1922, as stated in Sebah and
       Gourdon 2002.  For inputs under 10M, a correction factor is  additionally  applied  to  reduce  the  mean
       squared error.

   semi_primes
       Returns  an  array  reference  to semiprimes between the lower and upper limits (inclusive), with a lower
       limit of 4 if none is given.   This  is  OEIS  A001358  <http://oeis.org/A001358>.   The  semiprimes  are
       composite integers which are products of exactly two primes.

       This works just like the "primes" function.  Like that function, an array reference is returned.

   semiprime_count
       Similar to prime count, but returns the count of semiprimes (composites with exactly two factors).  Takes
       either a single number indicating a count from 2 to the argument, or two numbers indicating a range.

       A  fast  method  that  requires  computation only to the square root of the range end is used, unless the
       range is so small that walking it is faster.

   semiprime_count_approx
       Returns an approximation to the semiprime count of "n".  This returns quickly  and  is  typically  square
       root accurate.

   ramanujan_primes
       Returns  the Ramanujan primes R_n between the upper and lower limits (inclusive), with a lower limit of 2
       if none is given.  This is OEIS A104272 <http://oeis.org/A104272>.  These are the Rn such that  if  "x  >
       Rn" then "prime_count"(n) - "prime_count"(n/2) >= "n".

       This  has  a  similar  API  to  the "primes" and "twin_primes" functions, and like them, returns an array
       reference.

       Generating Ramanujan primes takes some effort, including  overhead  to  cover  a  range.   This  will  be
       substantially slower than generating standard primes.

   ramanujan_prime_count
       Similar  to  prime  count,  but  returns  the  count  of  Ramanujan primes.  Takes either a single number
       indicating a count from 2 to the argument, or two numbers indicating a range.

       While not nearly as efficient as prime_count, this does use a number of speedups that result it in  being
       much more efficient than generating all the Ramanujan primes.

   ramanujan_prime_count_approx
       A fast approximation of the count of Ramanujan primes under "n".

   ramanujan_prime_count_lower
       A fast lower limit on the count of Ramanujan primes under "n".

   ramanujan_prime_count_upper
       A fast upper limit on the count of Ramanujan primes under "n".

   sieve_range
         my @candidates = sieve_range(2**1000, 10000, 40000);

       Given  a  start  value  "n",  and  native unsigned integers "width" and "depth", a sieve of maximum depth
       "depth" is done for the "width" consecutive numbers beginning with "n".  An array  of  offsets  from  the
       start is returned.

       The  returned list contains those offsets in the range "n" to "n+width-1" where "n + offset" has no prime
       factors less than "depth".

   sieve_prime_cluster
         my @s = sieve_prime_cluster(1, 1e9, 2,6,8,12,18,20);

       Efficiently finds prime clusters between the  first  two  arguments  "low"  and  "high".   The  remaining
       arguments  describe  the  cluster.   The  cluster  values  must  be even, less than 31 bits, and strictly
       increasing.  Given a cluster set "C", the returned values are all primes in  the  range  where  "p+c"  is
       prime  for  each  "c"  in  the cluster set "C".  For returned values under "2^64", all cluster values are
       definitely prime.  Above this range, all cluster values are  BPSW  probable  primes  (no  counterexamples
       known).

       This  function  returns an array rather than an array reference.  Typically the number of returned values
       is much lower than for other primes functions, so this uses  the  more  convenient  array  return.   This
       function has an identical signature to the function of the same name in Math::Prime::Util:GMP.

       The  cluster is described as offsets from 0, with the implicit prime at 0.  Hence an empty list is asking
       for all primes (the cluster "p+0").  A list with the single value  2  will  find  all  twin  primes  (the
       cluster where "p+0" and "p+2" are prime).  The list "2,6,8" will find prime quadruplets.  Note that there
       is  no  requirement  that  the  list denote a constellation (a cluster with minimal distance) -- the list
       "42,92,606" is just fine.

   sum_primes
       Returns the summation of primes between the lower and upper limits (inclusive), with a lower limit  of  2
       if none is given.  This is essentially similar to either of:

           $sum = 0; forprimes { $sum += $_ } $low,$high;  $sum;
           # or
           vecsum( @{ primes($low,$high) } );

       but is much more efficient.

       The  current implementation is a small-table-enhanced sieve count for sums that fit in a UV, an efficient
       sieve count for small ranges, and a Legendre sum method for larger values.

       While   this   is   fairly   efficient,   the   state   of   the   art   is   Kim   Walisch's    primesum
       <https://github.com/kimwalisch/primesum>.  It is recommended for very large values, as it can be hundreds
       of times faster.

   print_primes
         print_primes(1_000_000);             # print the first 1 million primes
         print_primes(1000, 2000);            # print primes in range
         print_primes(2,1000,fileno(STDERR))  # print to a different descriptor

       With  a  single  argument  this  prints  all primes from 2 to "n" to standard out.  With two arguments it
       prints primes between "low" and "high" to standard output.  With three arguments it prints primes between
       "low" and "high" to the file descriptor given.  If the file descriptor cannot be written  to,  this  will
       croak with "print_primes write error".  It will produce identical output to:

           forprimes { say } $low,$high;

       The  point  of  this  function  is  just efficiency.  It is over 10x faster than using "say", "print", or
       "printf", though much more limited in functionality.  A later version may allow  a  file  handle  as  the
       third argument.

   nth_prime
         say "The ten thousandth prime is ", nth_prime(10_000);

       Returns  the  prime  that lies in index "n" in the array of prime numbers.  Put another way, this returns
       the smallest "p" such that "Pi(p) >= n".

       Like most programs  with  similar  functionality,  this  is  one-based.   nth_prime(0)  returns  "undef",
       nth_prime(1) returns 2.

       For  relatively  small  inputs (below 1 million or so), this does a sieve over a range containing the nth
       prime, then counts up to the number.  This is fairly efficient in time and memory.   For  larger  values,
       create  a  low-biased estimate using the inverse logarithmic integral, use a fast prime count, then sieve
       in the small difference.

       While this method is thousands of times faster than generating primes, and doesn't involve big tables  of
       precomputed  values, it still can take a fair amount of time for large inputs.  Calculating the "10^12th"
       prime takes about 1 second, the  "10^13th"  prime  takes  under  10  seconds,  and  the  "10^14th"  prime
       (3475385758524527)  takes  under  30  seconds.   Think  about  whether  a bound or approximation would be
       acceptable, as they can be computed analytically.

       If the result is larger than a native integer size (32-bit or 64-bit), the result will take a  very  long
       time.   A  later  version  of  Math::Prime::Util::GMP may include this functionality which would help for
       32-bit machines.

   nth_prime_upper
   nth_prime_lower
         my $lower_limit = nth_prime_lower($n);
         my $upper_limit = nth_prime_upper($n);
         # For all $n:   $lower_limit  <=  nth_prime($n)  <=  $upper_limit

       Returns an analytical upper or lower bound on the Nth prime.  No sieving is done, so these are fast  even
       for large inputs.

       For  tiny  values of "n". exact answers are returned.  For small inputs, an inverse of the opposite prime
       count bound is used.  For larger values, the Dusart (2010) and Axler (2013) bounds are used.

   nth_prime_approx
         say "The one trillionth prime is ~ ", nth_prime_approx(10**12);

       Returns an approximation to the "nth_prime" function, without having to generate any primes.  For  values
       where  the  nth prime is smaller than "2^64", the inverse Riemann R function is used.  For larger values,
       the inverse logarithmic integral is used.

       The value returned will not  necessarily  be  prime.   This  applies  to  all  the  following  nth  prime
       approximations,  where the returned value is close to the real value, but no effort is made to coerce the
       result to the nearest set element.

   nth_twin_prime
       Returns the Nth twin prime.  This is done via sieving and counting, so is not very fast for large values.

   nth_twin_prime_approx
       Returns an approximation to the Nth twin prime.  A curve fit is used for small inputs (under 1200), while
       for larger inputs a binary search is done on the approximate twin prime count.

   nth_semiprime
       Returns the Nth semiprime, similar to where a "forsemiprimes" loop would end after  "N"  iterations,  but
       much more efficiently.

   nth_semiprime_approx
       Returns an approximation to the Nth semiprime.  Curve fitting is used to get a fairly close approximation
       that is orders of magnitude better than the simple "n log n / log log n" approximation for large "n".

   nth_ramanujan_prime
       Returns  the  Nth  Ramanujan prime.  For reasonable size values of "n", e.g.  under "10^8" or so, this is
       relatively efficient for single calls.  If multiple calls are being made, it will be much more  efficient
       to get the list once.

   nth_ramanujan_prime_approx
       A fast approximation of the Nth Ramanujan prime.

   nth_ramanujan_prime_lower
       A fast lower limit on the Nth Ramanujan prime.

   nth_ramanujan_prime_upper
       A fast upper limit on the Nth Ramanujan prime.

   is_pseudoprime
       Takes  a positive number "n" and one or more non-zero positive bases as input.  Returns 1 if the input is
       a probable prime to each base, 0 if not.  This is the simple Fermat  primality  test.   Removing  primes,
       given base 2 this produces the sequence OEIS A001567 <http://oeis.org/A001567>.

       For practical use, "is_strong_pseudoprime" is a much stronger test with similar or better performance.

       Note  that  there is a set of composites (the Carmichael numbers) that will pass this test for all bases.
       This downside is not shared by the Euler and strong  probable  prime  tests  (also  called  the  Solovay-
       Strassen and Miller-Rabin tests).

   is_euler_pseudoprime
       Takes  a positive number "n" and one or more non-zero positive bases as input.  Returns 1 if the input is
       an Euler probable prime to each base, 0 if not.  This is the Euler  test,  sometimes  called  the  Euler-
       Jacobi   test.    Removing   primes,   given   base   2   this   produces   the   sequence  OEIS  A047713
       <http://oeis.org/A047713>.

       If 0 is returned, then the number really is a composite.  If 1 is returned, then it is either a prime  or
       an  Euler  pseudoprime to all the given bases.  Given enough distinct bases, the chances become very high
       that the number is actually prime.

       This test forms the basis of the Solovay-Strassen test, which is a precursor  to  the  Miller-Rabin  test
       (which  uses  the strong probable prime test).  There are no analogies to the Carmichael numbers for this
       test.  For the Euler test, at most 1/2 of witnesses pass for a composite, while at most 1/4 pass for  the
       strong pseudoprime test.

   is_strong_pseudoprime
         my $maybe_prime = is_strong_pseudoprime($n, 2);
         my $probably_prime = is_strong_pseudoprime($n, 2, 3, 5, 7, 11, 13, 17);

       Takes  a positive number "n" and one or more non-zero positive bases as input.  Returns 1 if the input is
       a strong probable prime to each base, 0 if not.

       If 0 is returned, then the number really is a composite.  If 1 is returned, then it is either a prime  or
       a  strong pseudoprime to all the given bases.  Given enough distinct bases, the chances become very, very
       high that the number is actually prime.

       This is usually used in combination with other tests to make either stronger tests (e.g. the strong  BPSW
       test)  or  deterministic  results  for numbers less than some verified limit (e.g. it has long been known
       that no more than three selected bases are required to give correct primality test results for any 32-bit
       number).  Given the small chances of passing multiple bases, there are some math packages that  just  use
       multiple MR tests for primality testing.

       Even inputs other than 2 will always return 0 (composite).  While the algorithm does run with even input,
       most  sources  define  it  only  on  odd  input.   Returning composite for all non-2 even input makes the
       function match most other implementations including Math::Primality's "is_strong_pseudoprime" function.

   is_lucas_pseudoprime
       Takes a positive number as input, and returns 1 if the input is a standard Lucas probable prime using the
       Selfridge method of choosing D, P,  and  Q  (some  sources  call  this  a  Lucas-Selfridge  pseudoprime).
       Removing primes, this produces the sequence OEIS A217120 <http://oeis.org/A217120>.

   is_strong_lucas_pseudoprime
       Takes  a  positive number as input, and returns 1 if the input is a strong Lucas probable prime using the
       Selfridge method of choosing D, P, and Q (some sources call this a strong  Lucas-Selfridge  pseudoprime).
       This  is  one half of the BPSW primality test (the Miller-Rabin strong pseudoprime test with base 2 being
       the other half).  Removing primes, this produces the sequence OEIS A217255 <http://oeis.org/A217255>.

   is_extra_strong_lucas_pseudoprime
       Takes a positive number as input, and returns 1 if the input passes  the  extra  strong  Lucas  test  (as
       defined  in  Grantham  2000  <http://www.ams.org/mathscinet-getitem?mr=1680879>).   This  test  has  more
       stringent conditions than the strong Lucas test, and produces about 60% fewer pseudoprimes.   Performance
       is typically 20-30% faster than the strong Lucas test.

       The parameters are selected using the Baillie-OEIS method <http://oeis.org/A217719> method: increment "P"
       from   3   until  "jacobi(D,n)  =  -1".   Removing  primes,  this  produces  the  sequence  OEIS  A217719
       <http://oeis.org/A217719>.

   is_almost_extra_strong_lucas_pseudoprime
       This is similar to the "is_extra_strong_lucas_pseudoprime" function, but does not calculate "U", so is  a
       little  faster, but also weaker.  With the current implementations, there is little reason to prefer this
       unless trying to reproduce specific results.  The extra-strong implementation has been optimized  to  use
       similar features, removing most of the performance advantage.

       An  optional  second  argument  (an  integer  between  1  and 256) indicates the increment amount for "P"
       parameter  selection.   The  default  value  of  1  yields   the   parameter   selection   described   in
       "is_extra_strong_lucas_pseudoprime",  creating a pseudoprime sequence which is a superset of the latter's
       pseudoprime sequence OEIS A217719 <http://oeis.org/A217719>.  A value of 2 yields the method used by Pari
       <http://pari.math.u-bordeaux.fr/faq.html#primetest>.

       Because the "U = 0" condition is ignored, this produces about 5% more pseudoprimes than the  extra-strong
       Lucas  test.   However  this is still only 66% of the number produced by the strong Lucas-Selfridge test.
       No BPSW counterexamples have been found with any of the Lucas tests described.

   is_euler_plumb_pseudoprime
       Takes a positive number "n" as input and returns 1 if "n" passes Colin Plumb's Euler Criterion  primality
       test.  Pseudoprimes to this test are a subset of the base 2 Fermat and Euler tests, but a superset of the
       base 2 strong pseudoprime (Miller-Rabin) test.

       The main reason for this test is that is a bit more efficient than other probable prime tests.

   is_perrin_pseudoprime
       Takes a positive number "n" as input and returns 1 if "n" divides P(n) where P(n) is the Perrin number of
       "n".  The Perrin sequence is defined by "P(n) = P(n-2) + P(n-3)" with "P(0) = 3, P(1) = 0, P(2) = 2".

       While  pseudoprimes  are  relatively  rare  (the first two are 271441 and 904631), infinitely many exist.
       They have significant overlap with the base-2 pseudoprimes  and  strong  pseudoprimes,  making  the  test
       inferior  to the Lucas or Frobenius tests for combined testing.  The pseudoprime sequence is OEIS A013998
       <http://oeis.org/A013998>.

       The implementation uses modular pre-filters, Montgomery math, and the Adams/Shanks doubling method.  This
       is significantly more efficient than other known implementations.

       An optional second argument "r" indicates whether to run additional tests.  With "r=1", "P(-n) =  -1  mod
       n"  is  also  verified,  creating  the "minimal restricted" test.  With "r=2", the full signature is also
       tested using the Adams and Shanks (1982) rules (without the quadratic form test).  With "r=3",  the  full
       signature is testing using the Grantham (2000) test, which additionally does not allow pseudoprimes to be
       divisible   by   2   or   23.    The   minimal   restricted   pseudoprime   sequence   is   OEIS  A018187
       <http://oeis.org/A018187>.

   is_catalan_pseudoprime
       Takes a positive number "n" as input and returns 1 if "-1^((n-1/2)) C_((n-1/2)" is  congruent  to  2  mod
       "n",  where  "C_n" is the nth Catalan number.  The nth Catalan number is equal to "binomial(2n,n)/(n+1)".
       All odd primes satisfy this condition, and only three known composites.

       The pseudoprime sequence is OEIS A163209 <http://oeis.org/A163209>.

       There is no known efficient method to perform the Catalan primality test, so it  is  a  curiosity  rather
       than  a  practical  test.  The implementation uses a method from Charles Greathouse IV (2015) and results
       from Aebi and Cairns (2008) to  produce  results  many  orders  of  magnitude  faster  than  other  known
       implementations, but it is still vastly slower than other compositeness tests.

   is_frobenius_pseudoprime
       Takes  a  positive number "n" as input, and two optional parameters "a" and "b", and returns 1 if the "n"
       is a Frobenius probable prime with respect to the polynomial "x^2 - ax + b".  Without the parameters,  "b
       =  2"  and  "a"  is  the  least  positive  odd number such that "(a^2-4b|n) = -1".  This selection has no
       pseudoprimes below "2^64" and none known.  In any case, the discriminant "a^2-4b" must not be  a  perfect
       square.

       Some authors use the Fibonacci polynomial "x^2-x-1" corresponding to "(1,-1)" as the default method for a
       Frobenius  probable  prime test.  This creates a weaker test than most other parameter choices (e.g. over
       twenty times more pseudoprimes than "(3,-5)"), so is not used as the default  here.   With  the  "(1,-1)"
       parameters the pseudoprime sequence is OEIS A212424 <http://oeis.org/A212424>.

       The  Frobenius  test is a stronger test than the Lucas test.  Any Frobenius "(a,b)" pseudoprime is also a
       Lucas "(a,b)" pseudoprime but the converse is not true, as any Frobenius "(a,b)" pseudoprime  is  also  a
       Fermat  pseudoprime  to  the base "|b|".  We can see that with the default parameters this is similar to,
       but somewhat weaker than, the BPSW test used by this module  (which  uses  the  strong  and  extra-strong
       versions of the probable prime and Lucas tests respectively).

       Also  see  the more efficient "is_frobenius_khashin_pseudoprime" and "is_frobenius_underwood_pseudoprime"
       which have no known counterexamples and run quite a bit faster.

   is_frobenius_underwood_pseudoprime
       Takes a positive number as input, and returns 1 if the input passes the efficient Frobenius test of  Paul
       Underwood.  This selects a parameter "a" as the least non-negative integer such that "(a^2-4|n)=-1", then
       verifies that "(x+2)^(n+1) = 2a + 5 mod (x^2-ax+1,n)".  This combines a Fermat and Lucas test with a cost
       of  only  slightly  more  than  2 strong pseudoprime tests.  This makes it similar to, but faster than, a
       regular Frobenius test.

       There are no known pseudoprimes to this test and extensive computation has shown no counterexamples under
       "2^50".  This test also has no overlap with the BPSW test, making it a very effective method  for  adding
       additional certainty.  Performance at 1e12 is about 60% slower than BPSW.

   is_frobenius_khashin_pseudoprime
       Takes a positive number as input, and returns 1 if the input passes the Frobenius test of Sergey Khashin.
       This  ensures  "n" is not a perfect square, selects the parameter "c" as the smallest odd prime such that
       "(c|n)=-1", then verifies that "(1+D)^n = (1-D) mod n" where "D = sqrt(c) mod n".

       There are no known pseudoprimes to this test and Khashin (2018) shows there are no counterexamples  under
       "2^64".  Performance at 1e12 is about 40% slower than BPSW.

   miller_rabin_random
       Takes a positive number ("n") as input and a positive number ("k") of bases to use.  Performs "k" Miller-
       Rabin tests using uniform random bases between 2 and "n-2".

       This should not be used in place of "is_prob_prime", "is_prime", or "is_provable_prime".  Those functions
       will be faster and provide better results than running "k" Miller-Rabin tests.  This function can be used
       if  one  wants  more  assurances  for non-proven primes, such as for cryptographic uses where the size is
       large enough that proven primes are not desired.

   is_prob_prime
         my $prob_prime = is_prob_prime($n);
         # Returns 0 (composite), 2 (prime), or 1 (probably prime)

       Takes a positive number as input and returns back either  0  (composite),  2  (definitely  prime),  or  1
       (probably prime).

       For 64-bit input (native or bignum), this uses either a deterministic set of Miller-Rabin tests (1, 2, or
       3  tests)  or  a  strong BPSW test consisting of a single base-2 strong probable prime test followed by a
       strong Lucas test.  This has been verified with Jan Feitsma's 2-PSP database to produce no false  results
       for 64-bit inputs.  Hence the result will always be 0 (composite) or 2 (prime).

       For  inputs larger than "2^64", an extra-strong Baillie-PSW primality test is performed (also called BPSW
       or BSW).  This is a probabilistic test, so only 0 (composite) and 1 (probably prime) are returned.  There
       is a possibility that composites may be returned marked prime, but since the test was published in  1980,
       not  a  single  BPSW pseudoprime has been found, so it is extremely likely to be prime.  While we believe
       (Pomerance 1984) that an infinite number of counterexamples exist, there is a  weak  conjecture  (Martin)
       that none exist under 10000 digits.

   is_bpsw_prime
       Given  a positive number input, returns 0 (composite), 2 (definitely prime), or 1 (probably prime), using
       the BPSW primality test (extra-strong variant).  Normally one of the "is_prime" in  Math::Prime::Util  or
       "is_prob_prime"  in  Math::Prime::Util  functions  will suffice, but those functions do pre-tests to find
       easy composites.  If you know this is not necessary, then calling "is_bpsw_prime" may save a small amount
       of time.

   is_provable_prime
         say "$n is definitely prime" if is_provable_prime($n) == 2;

       Takes a positive number as input and returns back either  0  (composite),  2  (definitely  prime),  or  1
       (probably  prime).   This  gives  it the same return values as "is_prime" and "is_prob_prime".  Note that
       numbers below 2^64 are considered proven by the deterministic set of Miller-Rabin bases or the BPSW test.
       Both of these have been tested for all small (64-bit) composites and do not return false positives.

       Using the Math::Prime::Util::GMP module is highly recommended for doing primality proofs, as it is  much,
       much  faster.   The pure Perl code is just not fast for this type of operation, nor does it have the best
       algorithms.  It should suffice for proofs of up to 40 digit primes, while the latest MPU::GMP  works  for
       primes of hundreds of digits (thousands with an optional larger polynomial set).

       The  pure Perl implementation uses theorem 5 of BLS75 (Brillhart, Lehmer, and Selfridge's 1975 paper), an
       improvement on the Pocklington-Lehmer test.  This requires "n-1" to be factored to "(n/2)^(1/3))".   This
       is often fast, but as "n" gets larger, it takes exponentially longer to find factors.

       Math::Prime::Util::GMP implements both the BLS75 theorem 5 test as well as ECPP (elliptic curve primality
       proving).   It will typically try a quick "n-1" proof before using ECPP.  Certificates are available with
       either method.  This results in proofs of 200-digit primes  in  under  1  second  on  average,  and  many
       hundreds  of  digits  are possible.  This makes it significantly faster than Pari 2.1.7's "is_prime(n,1)"
       which is the default for Math::Pari.

   prime_certificate
         my $cert = prime_certificate($n);
         say verify_prime($cert) ? "proven prime" : "not prime";

       Given a positive integer "n" as input, returns a primality certificate as a  multi-line  string.   If  we
       could  not  prove  "n" prime, an empty string is returned ("n" may or may not be composite).  This may be
       examined or given to "verify_prime" for verification.  The latter function contains  the  description  of
       the format.

   is_provable_prime_with_cert
       Given   a   positive   integer   as  input,  returns  a  two  element  array  containing  the  result  of
       "is_provable_prime":
         0  definitely composite
         1  probably prime
         2  definitely prime and a primality certificate like "prime_certificate".  The certificate will  be  an
       empty string if the first element is not 2.

   verify_prime
         my $cert = prime_certificate($n);
         say verify_prime($cert) ? "proven prime" : "not prime";

       Given  a  primality  certificate, returns either 0 (not verified) or 1 (verified).  Most computations are
       done using pure Perl with Math::BigInt, so you probably want to install and  use  Math::BigInt::GMP,  and
       ECPP certificates will be faster with Math::Prime::Util::GMP for its elliptic curve computations.

       If  the  certificate  is  malformed,  the routine will carp a warning in addition to returning 0.  If the
       "verbose" option is set (see "prime_set_config") then if the validation fails, the reason for the failure
       is printed in addition to returning 0.  If the "verbose" option is set to 2 or  higher,  then  a  message
       indicating success and the certificate type is also printed.

       A  certificate may have arbitrary text before the beginning (the primality routines from this module will
       not have any extra text, but this way  verbose  output  from  the  prover  can  be  safely  stored  in  a
       certificate).  The certificate begins with the line:

         [MPU - Primality Certificate]

       All  lines in the certificate beginning with "#" are treated as comments and ignored, as are blank lines.
       A version number may follow, such as:

         Version 1.0

       For all inputs, base 10 is the default, but at any point this may be changed with a line like:

         Base 16

       where allowed bases are 10, 16, and 62.  This module will only use base 10,  so  its  routines  will  not
       output Base commands.

       Next, we look for (using "100003" as an example):

         Proof for:
         N 100003

       where  the text "Proof for:" indicates we will read an "N" value.  Skipping comments and blank lines, the
       next line should be "N " followed by the number.

       After this, we read one or more blocks.  Each block is a proof of the form:

         If Q is prime, then N is prime.

       Some of the blocks have more than one Q value associated with them, but most only have one.   Each  block
       has  its  own  set  of conditions which must be verified, and this can be done completely self-contained.
       That is, each block is independent of the other blocks and may be  processed  in  any  order.   To  be  a
       complete  proof,  each  block  must  successfully verify.  The block types and their conditions are shown
       below.

       Finally, when all blocks have been read and verified, we must ensure we can construct a proof  tree  from
       the  set  of  blocks.  The root of the tree is the initial "N", and for each node (block), all "Q" values
       must either have a block using that value as its "N" or "Q" must be less than "2^64" and pass BPSW.

       Some other certificate formats (e.g. Primo) use an ordered chain, where the first block must be  for  the
       initial  "N",  a  single  "Q"  is  given  which  is  the implied "N" for the next block, and so on.  This
       simplifies  validation  implementation  somewhat,  and  removes  some  redundant  information  from   the
       certificate,  but  has no obvious way to add proof types such as Lucas or the various BLS75 theorems that
       use multiple factors.  I decided that the most general solution was to have the certificate  contain  the
       set in any order, and let the verifier do the work of constructing the tree.

       The blocks begin with the text "Type ..." where ... is the type.  One or more values follow.  The defined
       types are:

       "Small"
             Type Small
             N 5791

           N must be less than 2^64 and be prime (use BPSW or deterministic M-R).

       "BLS3"
             Type BLS3
             N  2297612322987260054928384863
             Q  16501461106821092981
             A  5

           A simple n-1 style proof using BLS75 theorem 3.  This block verifies if:
             a  Q is odd
             b  Q > 2
             c  Q divides N-1
             .  Let M = (N-1)/Q
             d  MQ+1 = N
             e  M > 0
             f  2Q+1 > sqrt(N)
             g  A^((N-1)/2) mod N = N-1
             h  A^(M/2) mod N != N-1

       "Pocklington"
             Type Pocklington
             N  2297612322987260054928384863
             Q  16501461106821092981
             A  5

           A  simple n-1 style proof using generalized Pocklington.  This is more restrictive than BLS3 and much
           more than BLS5.  This is Primo's type 1, and this module does not currently  generate  these  blocks.
           This block verifies if:
             a  Q divides N-1
             .  Let M = (N-1)/Q
             b  M > 0
             c  M < Q
             d  MQ+1 = N
             e  A > 1
             f  A^(N-1) mod N = 1
             g  gcd(A^M - 1, N) = 1

       "BLS15"
             Type BLS15
             N  8087094497428743437627091507362881
             Q  175806402118016161687545467551367
             LP 1
             LQ 22

           A simple n+1 style proof using BLS75 theorem 15.  This block verifies if:
             a  Q is odd
             b  Q > 2
             c  Q divides N+1
             .  Let M = (N+1)/Q
             d  MQ-1 = N
             e  M > 0
             f  2Q-1 > sqrt(N)
             .  Let D = LP*LP - 4*LQ
             g  D != 0
             h  Jacobi(D,N) = -1
             .  Note: V_{k} indicates the Lucas V sequence with LP,LQ
             i  V_{m/2} mod N != 0
             j  V_{(N+1)/2} mod N == 0

       "BLS5"
             Type BLS5
             N  8087094497428743437627091507362881
             Q[1]  98277749
             Q[2]  3631
             A[0]  11
             ----

           A  more  sophisticated  n-1  proof  using  BLS  theorem  5.  This requires N-1 to be factored only to
           "(N/2)^(1/3)".  While this looks much more complicated, it really isn't much more work.  The  biggest
           drawback  is  just  that  we  have  multiple  Q values to chain rather than a single one.  This block
           verifies if:

             a  N > 2
             b  N is odd
             .  Note: the block terminates on the first line starting with a C<->.
             .  Let Q[0] = 2
             .  Let A[i] = 2 if Q[i] exists and A[i] does not
             c  For each i (0 .. maxi):
             c1   Q[i] > 1
             c2   Q[i] < N-1
             c3   A[i] > 1
             c4   A[i] < N
             c5   Q[i] divides N-1
             . Let F = N-1 divided by each Q[i] as many times as evenly possible
             . Let R = (N-1)/F
             d  F is even
             e  gcd(F, R) = 1
             . Let s = integer    part of R / 2F
             . Let f = fractional part of R / 2F
             . Let P = (F+1) * (2*F*F + (r-1)*F + 1)
             f  n < P
             g  s = 0  OR  r^2-8s is not a perfect square
             h  For each i (0 .. maxi):
             h1   A[i]^(N-1) mod N = 1
             h2   gcd(A[i]^((N-1)/Q[i])-1, N) = 1

       "ECPP"
             Type ECPP
             N  175806402118016161687545467551367
             A  96642115784172626892568853507766
             B  111378324928567743759166231879523
             M  175806402118016177622955224562171
             Q  2297612322987260054928384863
             X  3273750212
             Y  82061726986387565872737368000504

           An elliptic curve primality block, typically generated with an Atkin/Morain ECPP implementation,  but
           this  should  be  adequate  for anything using the Atkin-Goldwasser-Kilian-Morain style certificates.
           Some basic elliptic curve math is needed for these.  This block verifies if:

             .  Note: A and B are allowed to be negative, with -1 not uncommon.
             .  Let A = A % N
             .  Let B = B % N
             a  N > 0
             b  gcd(N, 6) = 1
             c  gcd(4*A^3 + 27*B^2, N) = 1
             d  Y^2 mod N = X^3 + A*X + B mod N
             e  M >= N - 2*sqrt(N) + 1
             f  M <= N + 2*sqrt(N) + 1
             g  Q > (N^(1/4)+1)^2
             h  Q < N
             i  M != Q
             j  Q divides M
             .  Note: EC(A,B,N,X,Y) is the point (X,Y) on Y^2 = X^3 + A*X + B, mod N
             .        All values work in affine coordinates, but in theory other
             .        representations work just as well.
             .  Let POINT1 = (M/Q) * EC(A,B,N,X,Y)
             .  Let POINT2 = M * EC(A,B,N,X,Y)  [ = Q * POINT1 ]
             k  POINT1 is not the identity
             l  POINT2 is the identity

   is_aks_prime
         say "$n is definitely prime" if is_aks_prime($n);

       Takes a non-negative number as input, and returns 1 if the input passes  the  Agrawal-Kayal-Saxena  (AKS)
       primality  test.   This is a deterministic unconditional primality test which runs in polynomial time for
       general input.

       While this is an important theoretical algorithm, and  makes  an  interesting  example,  it  is  hard  to
       overstate  just  how  impractically  slow  it  is  in  practice.   It is not used for any purpose in non-
       theoretical work, as it is literally millions of times slower than other algorithms.  From  R.P.   Brent,
       2010:   "AKS  is  not  a practical algorithm.  ECPP is much faster."  We have ECPP, and indeed it is much
       faster.

       This implementation uses theorem 4.1 from Bernstein  (2003).   It  runs  substantially  faster  than  the
       original,  v6  revised  paper  with  Lenstra  improvements,  or  the late 2002 improvements of Voloch and
       Bornemann.   The  GMP  implementation  uses  a  binary  segmentation  method   for   modular   polynomial
       multiplication  (see Bernstein's 2007 Quartic paper), which reduces to a single scalar multiplication, at
       which GMP excels.  Because of this, the GMP implementation is likely to  be  faster  once  the  input  is
       larger than "2^33".

   is_mersenne_prime
         say "2^607-1 (M607) is a Mersenne prime" if is_mersenne_prime(607);

       Takes a non-negative number "p" as input and returns 1 if the Mersenne number "2^p-1" is prime.  Since an
       enormous  effort has gone into testing these, a list of known Mersenne primes is used to accelerate this.
       Beyond the highest sequential Mersenne prime (currently 37,156,667) this performs pretesting followed  by
       the Lucas-Lehmer test.

       The  Lucas-Lehmer  test  is  a  deterministic  unconditional  test  that runs very fast compared to other
       primality methods for numbers of comparable size, and vastly faster than any known general-form primality
       proof methods.  While this test is fast, the GMP implementation is not  nearly  as  fast  as  specialized
       programs  such  as "prime95".  Additionally, since we use the table for "small" numbers, testing via this
       function call will only occur for numbers with over 9.8 million digits.  At  this  size,  tools  such  as
       "prime95" are greatly preferred.

   is_ramanujan_prime
       Takes  a  positive  number  "n"  as  input  and  returns  back either 0 or 1, indicating whether "n" is a
       Ramanujan  prime.   Numbers  that   can   be   produced   by   the   functions   "ramanujan_primes"   and
       "nth_ramanujan_prime" will return 1, while all other numbers will return 0.

       There  is  no simple function for this predicate, so Ramanujan primes through at least "n" are generated,
       then a search is performed for "n".  This is not efficient for multiple calls.

   is_power
         say "$n is a perfect square" if is_power($n, 2);
         say "$n is a perfect cube" if is_power($n, 3);
         say "$n is a ", is_power($n), "-th power";

       Given a single non-negative integer input "n", returns k if "n = r^k" for some integer "r > 1,  k  >  1",
       and  0  otherwise.   The  k returned is the largest possible.  This can be used in a boolean statement to
       determine if "n" is a perfect power.

       If given two arguments "n" and "k", returns 1 if "n" is a "k-th" power, and 0 otherwise.  For example, if
       "k=2" then this detects perfect squares.  Setting "k=0" gives behavior like the first case  (the  largest
       root is found and its value is returned).

       If a third argument is present, it must be a scalar reference.  If "n" is a k-th power, then this will be
       set to the k-th root of "n".  For example:

         my $n = 222657534574035968;
         if (my $pow = is_power($n, 0, \my $root)) { say "$n = $root^$pow" }
         # prints:  222657534574035968 = 2948^5

       This corresponds to Pari/GP's "ispower" function with integer arguments.

   is_prime_power
       Given an integer input "n", returns "k" if "n = p^k" for some prime p, and zero otherwise.

       If a second argument is present, it must be a scalar reference.  If the return value is non-zero, then it
       will be set to "p".

       This corresponds to Pari/GP's "isprimepower" function.

   is_square
       Given  a  positive  integer "n", returns 1 if "n" is a perfect square, 0 otherwise.  This is identical to
       "is_power(n,2)".

       This corresponds to Pari/GP's "issquare" function.

   sqrtint
       Given a non-negative integer input "n", returns the integer square root.  For native  integers,  this  is
       equal to "int(sqrt(n))".

       This corresponds to Pari/GP's "sqrtint" function.

   rootint
       Given  an  non-negative integer "n" and positive exponent "k", return the integer k-th root of "n".  This
       is the largest integer "r" such that "r^k <= n".

       If a third argument is present, it must be a scalar reference.  It will be set to "r^k".

       Technically if  "n"  is  negative  and  "k"  is  odd,  the  root  exists  and  is  equal  to  "sign(n)  *
       |rootint(abs(n),k)".   It  was  decided  to  follow the behavior of Pari/GP and Math::BigInt and disallow
       negative "n".

       This corresponds to Pari/GP's "sqrtnint" function.

   logint
         say "decimal digits: ", 1+logint($n, 10);
         say "digits in base 12: ", 1+logint($n, 12);
         my $be; my $e = logint(1000,2, \$be);
         say "smallest power of 2 less than 1000:  2^$e = $be";

       Given a non-zero positive integer "n" and an integer base "b" greater than 1, returns the largest integer
       "e" such that "b^e <= n".

       If a third argument is present, it must be a scalar reference.  It will be set to "b^e".

       This corresponds to Pari/GP's "logint" function.

   lucasu
         say "Fibonacci($_) = ", lucasu(1,-1,$_) for 0..100;

       Given integers "P", "Q", and the non-negative integer "k", computes "U_k" for the Lucas sequence  defined
       by  "P","Q".   These  include  the  Fibonacci numbers ("1,-1"), the Pell numbers ("2,-1"), the Jacobsthal
       numbers ("1,-2"), the Mersenne numbers ("3,2"), and more.

       This corresponds to OpenPFGW's "lucasU" function and gmpy2's "lucasu" function.

   lucasv
         say "Lucas($_) = ", lucasv(1,-1,$_) for 0..100;

       Given integers "P", "Q", and the non-negative integer "k", computes "V_k" for the Lucas sequence  defined
       by "P","Q".  These include the Lucas numbers ("1,-1").

       This corresponds to OpenPFGW's "lucasV" function and gmpy2's "lucasv" function.

   lucas_sequence
         my($U, $V, $Qk) = lucas_sequence($n, $P, $Q, $k)

       Computes  "U_k",  "V_k",  and  "Q_k"  for the Lucas sequence defined by "P","Q", modulo "n".  The modular
       Lucas sequence is used in a number of primality tests and proofs.  The following conditions must hold:  "
       |P| < n"  ; " |Q| < n"  ; " k >= 0"  ; " n >= 2".

   gcd
       Given  a  list  of  integers,  returns  the  greatest  common  divisor.   This  is often used to test for
       coprimality <https://oeis.org/wiki/Coprimality>.

   lcm
       Given a list of integers, returns the least common multiple.   Note  that  we  follow  the  semantics  of
       Mathematica, Pari, and Perl 6, re:

         lcm(0, n) = 0              Any zero in list results in zero return
         lcm(n,-m) = lcm(n, m)      We use the absolute values

   gcdext
       Given  two integers "x" and "y", returns "u,v,d" such that "d = gcd(x,y)" and "u*x + v*y = d".  This uses
       the extended Euclidian algorithm to compute the values satisfying Bézout's Identity.

       This corresponds to Pari's "gcdext" function, which was renamed from "bezout" out Pari 2.6.  The  results
       will hence match "bezout" in Math::Pari.

   chinese
         say chinese( [14,643], [254,419], [87,733] );  # 87041638

       Solves  a  system of simultaneous congruences using the Chinese Remainder Theorem (with extension to non-
       coprime moduli).  A list of "[a,n]" pairs are taken as input, each representing an equation "x  ≡  a  mod
       n".   If no solution exists, "undef" is returned.  If a solution is returned, the modulus is equal to the
       lcm of all the given moduli (see "lcm".  In the standard case where all values of "n" are  coprime,  this
       is just the product.  The "n" values must be positive integers, while the "a" values are integers.

       Comparison to similar functions in other software:

         Math::ModInt::ChineseRemainder:
           cr_combine( mod(a1,m1), mod(a2,m2), ... )

         Pari/GP:
           chinese( [Mod(a1,m1), Mod(a2,m2), ...] )

         Mathematica:
           ChineseRemainder[{a1, a2, ...}{m1, m2, ...}]

   vecsum
         say "Totient sum 500,000: ", vecsum(euler_phi(0,500_000));

       Returns  the  sum  of  all  arguments, each of which must be an integer.  This is similar to List::Util's
       "sum0" in List::Util function, but has a very important difference.  List::Util  turns  all  inputs  into
       doubles  and  returns  a  double,  which  will mean incorrect results with large integers.  "vecsum" sums
       (signed) integers and returns the untruncated result.   Processing  is  done  on  native  integers  while
       possible.

   vecprod
         say "Totient product 5,000: ", vecprod(euler_phi(1,5_000));

       Returns  the product of all arguments, each of which must be an integer.  This is similar to List::Util's
       "product" in List::Util function, but keeps all results as integers and automatically switches to bigints
       if needed.

   vecmin
         say "Smallest Totient 100k-200k: ", vecmin(euler_phi(100_000,200_000));

       Returns the minimum of all arguments, each of which must be an integer.  This is similar to  List::Util's
       "min"  in  List::Util  function,  but  has a very important difference.  List::Util turns all inputs into
       doubles and returns a double, which gives incorrect results with large integers.  "vecmin" validates  and
       compares  all  results  as  integers.   The  validation  step  will make it a little slower than "min" in
       List::Util but this prevents accidental and unintentional use of floats.

   vecmax
         say "Largest Totient 100k-200k: ", vecmax(euler_phi(100_000,200_000));

       Returns the maximum of all arguments, each of which must be an integer.  This is similar to  List::Util's
       "max"  in  List::Util  function,  but  has a very important difference.  List::Util turns all inputs into
       doubles and returns a double, which gives incorrect results with large integers.  "vecmax" validates  and
       compares  all  results  as  integers.   The  validation  step  will make it a little slower than "max" in
       List::Util but this prevents accidental and unintentional use of floats.

   vecreduce
         say "Count of non-zero elements: ", vecreduce { $a + !!$b } (0,@v);
         my $checksum = vecreduce { $a ^ $b } @{twin_primes(1000000)};

       Does a reduce operation via left fold.  Takes a block and a  list  as  arguments.   The  block  uses  the
       special local variables "a" and "b" representing the accumulation and next element respectively, with the
       result  of the block being used for the new accumulation.  No initial element is used, so "undef" will be
       returned with an empty list.

       The interface is exactly the same as "reduce" in List::Util.  This was done to increase  portability  and
       minimize  confusion.   See  chapter 7 of Higher Order Perl (or many other references) for a discussion of
       reduce with empty or singular-element lists.  It is often a good idea to give an identity element as  the
       first list argument.

       While operations like vecmin, vecmax, vecsum, vecprod, etc. can be fairly easily done with this function,
       it  will  not  be as efficient.  There are a wide variety of other functions that can be easily made with
       reduce, making it a useful tool.

   vecany
   vecall
   vecnone
   vecnotall
   vecfirst
         say "all values are Carmichael" if vecall { is_carmichael($_) } @n;

       Short circuit evaluations of a block over a list.  Takes a block and a list as arguments.  The  block  is
       called  with  $_  set to each list element, and evaluation on list elements is done until either all list
       values have been evaluated or the result condition can be determined.  For instance, in  the  example  of
       "vecall" above, evaluation stops as soon as any value returns false.

       The  interface  is  exactly  the  same  as  the  "any", "all", "none", "notall", and "first" functions in
       List::Util.  This was done to increase portability and minimize confusion.  Unlike other vector functions
       like "vecmax", "vecmax", "vecsum", etc. there is no added value to  using  these  versus  the  ones  from
       List::Util.  They are here for convenience.

       These  operations can fairly easily be mapped to "scalar(grep {...} @n)", but that does not short-circuit
       and is less obvious.

   vecfirstidx
         say "first Carmichael is index ", vecfirstidx { is_carmichael($_) } @n;

       Returns the index of the first element in a list that evaluates to true.  Just like vecfirst, but returns
       the index instead of the value.  Returns -1 if the item could not be found.

       This interface matches "firstidx" and "first_index" from List::MoreUtils.

   vecextract
         say "Power set: ", join(" ",vecextract(\@v,$_)) for 0..2**scalar(@v)-1;
         @word = vecextract(["a".."z"], [15, 17, 8, 12, 4]);

       Extracts elements from an array reference based on a mask, with the result returned  as  an  array.   The
       mask  is  either  an  unsigned  integer  which is treated as a bit mask, or an array reference containing
       integer indices.

       If the second argument is an integer, each bit set in the mask results in the corresponding element  from
       the  array  reference  to  be  returned.   Bits are read from the right, so a mask of 1 returns the first
       element, while 5 will return the first and third.  The mask may be a bigint.

       If the second argument is an array reference, then its elements will be used as zero-based  indices  into
       the  first  array.   Duplicate  values  are  allowed  and  the  ordering  is  preserved.  Hence these are
       equivalent:

           vecextract($aref, $iref);
           @$aref[@$iref];

   todigits
         say "product of digits of n: ", vecprod(todigits($n));

       Given an integer "n", return an array of digits of "|n|".  An optional second integer argument  specifies
       a  base (default 10).  For example, given a base of 2, this returns an array of binary digits of "n".  An
       optional third argument specifies a length for the returned array.  The result will be either have  upper
       digits truncated or have leading zeros added.  This is most often used with base 2, 8, or 16.

       The  values returned may be read-only.  todigits(0) returns an empty array.  The base must be at least 2,
       and is limited to an int.  Length must be at least zero and is limited to an int.

       This corresponds to Pari's "digits" and "binary" functions, and Mathematica's "IntegerDigits" function.

   todigitstring
         say "decimal 456 in hex is ", todigitstring(456, 16);
         say "last 4 bits of $n are: ", todigitstring($n, 2, 4);

       Similar to "todigits" but returns a string.  For bases <= 10, this is equivalent  to  joining  the  array
       returned  by  "todigits".   For  bases  between  11  and 36, lower case characters "a" to "z" are used to
       represent larger values.  This makes "todigitstring($n,16)" return a usable hex string.

       This corresponds to Mathematica's "IntegerString" function.

   fromdigits
         say "hex 1c8 in decimal is ", fromdigits("1c8", 16);
         say "Base 3 array to number is: ", fromdigits([0,1,2,2,2,1,0],3);

       This takes either a string or array reference, and an optional base (default 10).  With  a  string,  each
       character  will  be  interpreted  as  a  digit in the given base, with both upper and lower case denoting
       values 11 through 36.  With an array reference, the values indicate the entries  in  that  location,  and
       values  larger  than the base are allowed (results are carried).  The result is a number (either a native
       integer or a bigint).

       This corresponds to Pari's "fromdigits" function and Mathematica's "FromDigits" function.

   sumdigits
         # Sum digits of primes to 1 million.
         my $s=0; forprimes { $s += sumdigits($_); } 1e6; say $s;

       Given an input "n", return the sum of the digits of "n".  Any non-digit characters  of  "n"  are  ignored
       (including negative signs and decimal points).  This is similar to the command "vecsum(split(//,$n))" but
       faster, allows non-positive-integer inputs, and can sum in other bases.

       An  optional  second  argument  indicates the base of the input number.  This defaults to 10, and must be
       between 2 and 36.  Any character that is outside the range 0 to "base-1" will be ignored.

       If no base is given and the input number "n" begins with "0x" or "0b" then it will be  interpreted  as  a
       string in base 16 or 2 respectively.

       Regardless of the base, the output sum is a decimal number.

       This is similar but not identical to Pari's "sumdigits" function from version 2.8 and later.  The Pari/GP
       function  always  takes  the input as a decimal number, uses the optional base as a base to first convert
       to,  then  sums  the  digits.   This  can  be  done  with   either   "vecsum(todigits($n,   $base))"   or
       "sumdigits(todigitstring($n,$base))".

   invmod
         say "The inverse of 42 mod 2017 = ", invmod(42,2017);

       Given two integers "a" and "n", return the inverse of "a" modulo "n".  If not defined, undef is returned.
       If defined, then the return value multiplied by "a" equals 1 modulo "n".

       The  results correspond to the Pari result of "lift(Mod(1/a,n))".  The semantics with respect to negative
       arguments match Pari.  Notably, a negative "n" is negated, which is different from Math::BigInt,  but  in
       both cases the return value is still congruent to 1 modulo "n" as expected.

   sqrtmod
       Given  two  integers "a" and "n", return the square root of "a" mod "n".  If no square root exists, undef
       is returned.  If defined, the return value "r" will always satisfy "r^2 = a mod n".

       If the modulus is prime, the function will always return "r", the smaller of the two  square  roots  (the
       other being "-r mod p".  If the modulus is composite, one of possibly many square roots will be returned,
       and it will not necessarily be the smallest.

   addmod
       Given three integers "a", "b", and "n" where "n" is positive, return "(a+b) mod n".  This is particularly
       useful  when  dealing  with  numbers  that  are larger than a half-word but still native size.  No bigint
       package is needed and this can be 10-200x faster than using one.

   mulmod
       Given three integers "a", "b", and "n" where "n" is positive, return "(a*b) mod n".  This is particularly
       useful when "n" fits in a native integer.  No bigint package is needed and this  can  be  10-200x  faster
       than using one.

   powmod
       Given  three integers "a", "b", and "n" where "n" is positive, return "(a ** b) mod n".  Typically binary
       exponentiation is used, so the process is very efficient.  With native size inputs, no bigint library  is
       needed.

   divmod
       Given  three integers "a", "b", and "n" where "n" is positive, return "(a/b) mod n".  This is done as "(a
       * (1/b mod n)) mod n".  If no inverse of "b" mod "n" exists then undef if returned.

   valuation
         say "$n is divisible by 2 ", valuation($n,2), " times.";

       Given integers "n" and "k", returns the numbers of times "n" is divisible by "k".  This is a very limited
       version of the algebraic valuation meaning,  just  applied  to  integers.   This  corresponds  to  Pari's
       "valuation" function.  0 is returned if "n" or "k" is one of the values "-1", 0, or 1.

   hammingweight
       Given  an  integer  "n", returns the binary Hamming weight of abs(n).  This is also called the population
       count, and is the number of 1s in the binary representation.  This corresponds to Pari's  "hammingweight"
       function for "t_INT" arguments.

   is_square_free
         say "$n has no repeating factors" if is_square_free($n);

       Returns 1 if the input "n" has no repeated factor.

   is_carmichael
         for (1..1e6) { say if is_carmichael($_) } # Carmichaels under 1,000,000

       Returns 1 if the input "n" is a Carmichael number.  These are composites that satisfy "b^(n-1) ≡ 1 mod n"
       for  all  "1  <  b < n" relatively prime to "n".  Alternately Korselt's theorem says these are composites
       such that "n" is square-free and "p-1" divides "n-1" for all prime divisors "p" of "n".

       For inputs larger than 50 digits after removing very small factors, this uses a probabilistic test  since
       factoring  the number could take unreasonably long.  The first 150 primes are used for testing.  Any that
       divide "n" are checked for square-free-ness and the Korselt condition, while those that do not divide "n"
       are used as the pseudoprime base.  The chances of a  non-Carmichael  passing  this  test  are  less  than
       "2^-150".

       This is the OEIS series A002997 <http://oeis.org/A002997>.

   is_quasi_carmichael
       Returns  0  if  the input "n" is not a quasi-Carmichael number, and the number of bases otherwise.  These
       are square-free composites that satisfy "p+b" divides "n+b" for all prime factors "p" or "n" and for  one
       or more non-zero integer "b".

       This is the OEIS series A257750 <http://oeis.org/A257750>.

   is_semiprime
       Given  a  positive integer "n", returns 1 if "n" is a semiprime, 0 otherwise.  A semiprime is the product
       of exactly two primes.

       The boolean result is the same as "scalar(factor(n)) == 2", but this function performs shortcuts that can
       greatly speed up the operation.

   is_fundamental
       Given an integer "d", returns 1 if "d" is a fundamental discriminant, 0 otherwise.  We consider 1 to be a
       fundamental discriminant.

       This  is  the  OEIS  series  A003658  <http://oeis.org/A003658>  (positive)  and  OEIS   series   A003657
       <http://oeis.org/A003657> (negative).

       This corresponds to Pari's "isfundamental" function.

   is_totient
       Given an integer "n", returns 1 if there exists an integer "x" where "euler_phi(x) == n".

       This corresponds to Pari's "istotient" function, though without the optional second argument to return an
       "x".  Math::NumSeq::Totient also has a similar function.

       Also  see  "inverse_totient"  which gives the count or list of values that produce a given totient.  This
       function is more efficient than getting the full count or list.

   is_pillai
       Given a positive integer "n", if there exists a "v" where "v! % n == n-1" and "n % v != 1", then  "v"  is
       returned.  Otherwise 0.

       For n prime, this is the OEIS series A063980 <http://oeis.org/A063980>.

   is_polygonal
       Given integers "x" and "s", return 1 if x is an s-gonal number, 0 otherwise.  "s" must be greater than 2.

       If  a  third  argument  is  present,  it must be a scalar reference.  It will be set to n if x is the nth
       s-gonal number.  If the function returns 0, then it will be unchanged.

       This corresponds to Pari's "ispolygonal" function.

   moebius
         say "$n is square free" if moebius($n) != 0;
         $sum += moebius($_) for (1..200); say "Mertens(200) = $sum";
         say "Mertens(2000) = ", vecsum(moebius(0,2000));

       Returns μ(n), the Möbius function (also known as the Moebius,  Mobius,  or  MoebiusMu  function)  for  an
       integer  input.   This  function  is  1  if "n = 1", 0 if "n" is not square-free (i.e. "n" has a repeated
       factor), and "-1^t" if "n" is a product of "t" distinct primes.  This is an important function  in  prime
       number theory.  Like SAGE, we define "moebius(0) = 0" for convenience.

       If called with two arguments, they define a range "low" to "high", and the function returns an array with
       the  value  of  the  Möbius  function  for every n from low to high inclusive.  Large values of high will
       result in a lot of memory use.  The algorithm used for ranges is Deléglise  and  Rivat  (1996)  algorithm
       4.1, which is a segmented version of Lioen and van de Lune (1994) algorithm 3.2.

       The  return  values  are  read-only  constants.  This should almost never come up, but it means trying to
       modify aliased return values will cause an exception (modifying the returned scalar or array is fine).

   mertens
         say "Mertens(10M) = ", mertens(10_000_000);   # = 1037

       Returns M(n), the Mertens function for a  non-negative  integer  input.   This  function  is  defined  as
       "sum(moebius(1..n))",  but  calculated  more  efficiently  for  large  inputs.   For  example,  computing
       Mertens(100M) takes:

          time    approx mem
            0.4s      0.1MB   mertens(100_000_000)
            3.0s    880MB     vecsum(moebius(1,100_000_000))
           56s        0MB     $sum += moebius($_) for 1..100_000_000

       The summation of individual terms via factoring is quite expensive  in  time,  though  uses  O(1)  space.
       Using  the  range  version of moebius is much faster, but returns a 100M element array which, even though
       they are shared constants, is not good for memory at  this  size.   In  comparison,  this  function  will
       generate  the equivalent output via a sieving method that is relatively memory frugal and very fast.  The
       current method is a simple "n^1/2" version of Deléglise and Rivat (1996), which involves calculating  all
       moebius values to "n^1/2", which in turn will require prime sieving to "n^1/4".

       Various  algorithms  exist  for  this,  using  differing  quantities  of  μ(n).   The  simplest way is to
       efficiently sum all "n" values.  Benito and Varona (2008) show a  clever  and  simple  method  that  only
       requires "n/3" values.  Deléglise and Rivat (1996) describe a segmented method using only "n^1/3" values.
       The current implementation does a simple non-segmented "n^1/2" version of their method.  Kuznetsov (2011)
       gives  an  alternate  method  that  he indicates is even faster.  Lastly, one of the advanced prime count
       algorithms could be theoretically used to create a faster solution.

   euler_phi
         say "The Euler totient of $n is ", euler_phi($n);

       Returns φ(n), the Euler totient function (also called Euler's phi or phi function) for an integer  value.
       This  is  an  arithmetic  function which counts the number of positive integers less than or equal to "n"
       that are relatively prime to "n".

       Given the definition used, "euler_phi" will return 0 for all "n < 1".  This follows  the  logic  used  by
       SAGE.   Mathematica and Pari return "euler_phi(-n)" for "n < 0".  Mathematica returns 0 for "n = 0", Pari
       pre-2.6.2 raises an exception, and Pari 2.6.2 and newer returns 2.

       If called with two arguments, they define a range "low" to "high", and the function returns a  list  with
       the totient of every n from low to high inclusive.

   inverse_totient
       In  array  context,  given  a  positive  integer  "n",  returns  the  complete  list  of values "x" where
       "euler_phi(x) = n".  This can be a memory intensive operation if there are many values.

       In scalar context, returns just the count of values.  This is faster and uses substantially less  memory.
       The list/scalar distinction is similar to "factor" and "divisors".

       This  roughly  corresponds  to  the  Maple function "InverseTotient", and the hidden Mathematica function
       "EulerPhiInverse".  The algorithm used is from Max Alekseyev (2016).

   jordan_totient
         say "Jordan's totient J_$k($n) is ", jordan_totient($k, $n);

       Returns Jordan's totient function for a given integer value.  Jordan's totient  is  a  generalization  of
       Euler's totient, where
         "jordan_totient(1,$n)  == euler_totient($n)" This counts the number of k-tuples less than or equal to n
       that form a coprime tuple with n.  As with "euler_phi", 0 is returned for all "n < 1".  This function can
       be used to generate some other useful functions, such as the  Dedekind  psi  function,  where  "psi(n)  =
       J(2,n) / J(1,n)".

   ramanujan_sum
       Returns  Ramanujan's sum of the two positive variables "k" and "n".  This is the sum of the nth powers of
       the primitive k-th roots of unity.

   exp_mangoldt
         say "exp(lambda($_)) = ", exp_mangoldt($_) for 1 .. 100;

       Returns EXP(Λ(n)), the exponential of the Mangoldt function (also known as von Mangoldt's  function)  for
       an  integer  value.   The  Mangoldt function is equal to log p if n is prime or a power of a prime, and 0
       otherwise.  We return the  exponential  so  all  results  are  integers.   Hence  the  return  value  for
       "exp_mangoldt" is:

          p   if n = p^m for some prime p and integer m >= 1
          1   otherwise.

   liouville
       Returns  λ(n),  the  Liouville function for a non-negative integer input.  This is -1 raised to -(n) (the
       total number of prime factors).

   chebyshev_theta
         say chebyshev_theta(10000);

       Returns θ(n), the first Chebyshev function for a non-negative integer input.  This  is  the  sum  of  the
       logarithm of each prime where "p <= n".  This is effectively:

         my $s = 0;  forprimes { $s += log($_) } $n;  return $s;

   chebyshev_psi
         say chebyshev_psi(10000);

       Returns  ψ(n),  the  second  Chebyshev function for a non-negative integer input.  This is the sum of the
       logarithm of each prime power where "p^k <= n" for an integer k.  An alternate but slower computation  is
       as the summatory Mangoldt function, such as:

         my $s = 0;  for (1..$n) { $s += log(exp_mangoldt($_)) }  return $s;

   divisor_sum
         say "Sum of divisors of $n:", divisor_sum( $n );
         say "sigma_2($n) = ", divisor_sum($n, 2);
         say "Number of divisors: sigma_0($n) = ", divisor_sum($n, 0);

       This  function  takes  a  positive  integer as input and returns the sum of its divisors, including 1 and
       itself.  An optional second argument "k" may be given, which will result in the sum of the "k-th"  powers
       of the divisors to be returned.

       This  is  known  as  the  sigma  function  (see  Hardy and Wright section 16.7).  The API is identical to
       Pari/GP's "sigma" function, and not  dissimilar  to  Mathematica's  "DivisorSigma[k,n]"  function.   This
       function is useful for calculating things like aliquot sums, abundant numbers, perfect numbers, etc.

       With various "k" values, the results are the OEIS sequences OEIS series A000005 <http://oeis.org/A000005>
       ("k=0", number of divisors), OEIS series A000203 <http://oeis.org/A000203> ("k=1", sum of divisors), OEIS
       series  A001157  <http://oeis.org/A001157>  ("k=2",  sum  of  squares  of  divisors), OEIS series A001158
       <http://oeis.org/A001158> ("k=4", sum of cubes of divisors), etc.

       The second argument may also be a code reference, which is called for each divisor and  the  results  are
       summed.   This  allows  computation of other functions, but will be less efficient than using the numeric
       second argument.  This corresponds to Pari/GP's "sumdiv" function.

       An example of the 5th Jordan totient (OEIS A059378):

         divisor_sum( $n, sub { my $d=shift; $d**5 * moebius($n/$d); } );

       though we have a function "jordan_totient" which is more efficient.

       For numeric second arguments (sigma computations), the result will be a bigint  if  necessary.   For  the
       code reference case, the user must take care to return bigints if overflow will be a concern.

   ramanujan_tau
       Takes  a  positive  integer  as input and returns the value of Ramanujan's tau function.  The result is a
       signed integer.  This corresponds to Pari v2.8's "tauramanujan" function and Mathematica's "RamanujanTau"
       function.

       This currently uses a simple method based on divisor sums, which  does  not  have  a  good  computational
       growth rate.  Pari's implementation uses Hurwitz class numbers and is more efficient for large inputs.

   primorial
         $prim = primorial(11); #        11# = 2*3*5*7*11 = 2310

       Returns  the  primorial  "n#"  of the positive integer input, defined as the product of the prime numbers
       less than or equal to "n".  This is the OEIS series A034386 <http://oeis.org/A034386>: primorial  numbers
       second definition.

         primorial(0)  == 1
         primorial($n) == pn_primorial( prime_count($n) )

       The result will be a Math::BigInt object if it is larger than the native bit size.

       Be  careful  about  which version ("primorial" or "pn_primorial") matches the definition you want to use.
       Not all sources agree on the terminology, though they should give a clear definition of which of the  two
       versions  they mean.  OEIS, Wikipedia, and Mathworld are all consistent, and these functions should match
       that terminology.  This function should return the same result as the "mpz_primorial_ui"  function  added
       in GMP 5.1.

   pn_primorial
         $prim = pn_primorial(5); #      p_5# = 2*3*5*7*11 = 2310

       Returns  the  primorial  number "p_n#" of the positive integer input, defined as the product of the first
       "n" prime numbers (compare to the factorial, which is the product of  the  first  "n"  natural  numbers).
       This is the OEIS series A002110 <http://oeis.org/A002110>: primorial numbers first definition.

         pn_primorial(0)  == 1
         pn_primorial($n) == primorial( nth_prime($n) )

       The result will be a Math::BigInt object if it is larger than the native bit size.

   consecutive_integer_lcm
         $lcm = consecutive_integer_lcm($n);

       Given  an  unsigned  integer  argument,  returns the least common multiple of all integers from 1 to "n".
       This can be done by manipulation of the primes up to "n", resulting in much  faster  and  memory-friendly
       results than using a factorial.

   partitions
       Calculates  the  partition function p(n) for a non-negative integer input.  This is the number of ways of
       writing the integer n as a sum of positive integers, without restrictions.  This  corresponds  to  Pari's
       "numbpart"  function  and  Mathematica's  "PartitionsP"  function.  The values produced in order are OEIS
       series A000041 <http://oeis.org/A000041>.

       This uses a combinatorial  calculation,  which  means  it  will  not  be  very  fast  compared  to  Pari,
       Mathematica,  or  FLINT  which  use  the  Rademacher formula using multi-precision floating point.  In 10
       seconds:

                  70    Integer::Partition
                  90    MPU forpart { $n++ }
              10_000    MPU pure Perl partitions
             250_000    MPU GMP partitions
          35_000_000    Pari's numbpart
         500_000_000    Jonathan Bober's partitions_c.cc v0.6

       If you want the enumerated partitions, see "forpart".

   carmichael_lambda
       Returns the Carmichael function (also called the reduced totient  function,  or  Carmichael  λ(n))  of  a
       positive  integer  argument.  It is the smallest positive integer "m" such that "a^m = 1 mod n" for every
       integer "a" coprime to "n".  This is OEIS series A002322 <http://oeis.org/A002322>.

   kronecker
       Returns the Kronecker symbol "(a|n)" for two integers.  The possible return values  with  their  meanings
       for odd prime "n" are:

          0   a = 0 mod n
          1   a is a quadratic residue mod n       (a = x^2 mod n for some x)
         -1   a is a quadratic non-residue mod n   (no a where a = x^2 mod n)

       The  Kronecker symbol is an extension of the Jacobi symbol to all integer values of "n" from the latter's
       domain of positive odd values of "n".  The Jacobi symbol is itself an extension of the  Legendre  symbol,
       which is only defined for odd prime values of "n".  This corresponds to Pari's "kronecker(a,n)" function,
       Mathematica's  "KroneckerSymbol[n,m]"  function,  and  GMP's "mpz_kronecker(a,n)", "mpz_jacobi(a,n)", and
       "mpz_legendre(a,n)" functions.

   factorial
       Given positive integer argument "n", returns the factorial of "n", defined as the product of the integers
       1 to "n" with the special case of "factorial(0) =  1".   This  corresponds  to  Pari's  factorial(n)  and
       Mathematica's "Factorial[n]" functions.

   factorialmod
       Given two positive integer arguments "n" and "m", returns "n! mod m".  This is much faster than computing
       the large factorial(n) followed by a mod operation.

       While  very  efficient,  this  is  not state of the art.  Currently, Fredrik Johansson's fast multi-point
       polynomial evaluation method as used in FLINT is the fastest known method.  This becomes  noticeable  for
       "n"  >  "10^8"  or  so,  and  the O(n^.5) versus O(n) complexity makes it quite extreme as the input gets
       larger.

   binomial
       Given integer arguments "n" and "k", returns  the  binomial  coefficient  "n*(n-1)*...*(n-k+1)/k!",  also
       known    as    the    choose    function.     Negative    arguments   use   the   Kronenburg   extensions
       <http://arxiv.org/abs/1105.3689/>.  This corresponds to Pari's  "binomial(n,k)"  function,  Mathematica's
       "Binomial[n,k]" function, and GMP's "mpz_bin_ui" function.

       For  negative arguments, this matches Mathematica.  Pari does not implement the "n < 0, k <= n" extension
       and instead returns 0 for this case.  GMP's API does  not  allow  negative  "k"  but  otherwise  matches.
       Math::BigInt does not implement any extensions and the results for "n < 0, k " 0> are undefined.

   hclassno
       Returns  12  times  the  Hurwitz-Kronecker class number of the input integer "n".  This will always be an
       integer due to the pre-multiplication by 12.  The result is 0 for any input less than zero  or  congruent
       to 1 or 2 mod 4.

       This  is related to Pari's qfbhclassno(n) where hclassno(n) for positive "n" equals "12 * qfbhclassno(n)"
       in Pari/GP.  This is OEIS A259825 <http://oeis.org/A259825>.

   bernfrac
       Returns the Bernoulli number "B_n" for an integer argument "n", as a rational number represented  by  two
       Math::BigInt  objects.  B_1 = 1/2.  This corresponds to Pari's bernfrac(n) and Mathematica's "BernoulliB"
       functions.

       Having a modern version of Math::Prime::Util::GMP installed will make a big difference  in  speed.   That
       module  uses  a  fast  Pi/Zeta  method.   Our  pure Perl backend uses the Seidel method as shown by Peter
       Luschny.  This is faster than Math::Pari which uses an older algorithm,  but  quite  a  bit  slower  than
       modern Pari, Mathematica, or our GMP backend.

       This corresponds to Pari's "bernfrac" function and Mathematica's "BernoulliB" function.

   bernreal
       Returns  the  Bernoulli  number  "B_n"  for an integer argument "n", as a Math::BigFloat object using the
       default precision.  An optional second argument may be given specifying the precision to be used.

       This corresponds to Pari's "bernreal" function.

   stirling
         say "s(14,2) = ", stirling(14, 2);
         say "S(14,2) = ", stirling(14, 2, 2);
         say "L(14,2) = ", stirling(14, 2, 3);

       Returns the Stirling numbers of either the first kind (default), the second kind, or the third kind  (the
       unsigned  Lah  numbers), with the kind selected as an optional third argument.  It takes two non-negative
       integer  arguments  "n"   and   "k"   plus   the   optional   "type".    This   corresponds   to   Pari's
       "stirling(n,k,{type})" function and Mathematica's "StirlingS1" / "StirlingS2" functions.

       Stirling  numbers  of  the first kind are "-1^(n-k)" times the number of permutations of "n" symbols with
       exactly "k" cycles.  Stirling numbers of the second kind are the number of ways to partition a set of "n"
       elements into "k" non-empty subsets.  The Lah numbers are the number of  ways  to  split  a  set  of  "n"
       elements into "k" non-empty lists.

   harmfrac
       Returns  the  Harmonic  number "H_n" for an integer argument "n", as a rational number represented by two
       Math::BigInt objects.  The harmonic numbers are the sum of reciprocals of the first "n" natural  numbers:
       "1 + 1/2 + 1/3 + ... + 1/n".

       Binary splitting (Fredrik Johansson's elegant formulation) is used.

       This corresponds to Mathematica's "HarmonicNumber" function.

   harmreal
       Returns  the  Harmonic  number  "H_n"  for  an integer argument "n", as a Math::BigFloat object using the
       default precision.  An optional second argument may be given specifying the precision to be used.

       For large "n" values, using a lower precision may result in faster computation as an  asymptotic  formula
       may be used.  For precisions of 13 or less, native floating point is used for even more speed.

   znorder
         $order = znorder(2, next_prime(10**16)-6);

       Given two positive integers "a" and "n", returns the multiplicative order of "a" modulo "n".  This is the
       smallest positive integer "k" such that "a^k ≡ 1 mod n".  Returns 1 if "a = 1".  Returns undef if "a = 0"
       or if "a" and "n" are not coprime, since no value will result in 1 mod n.

       This  corresponds  to  Pari's  "znorder(Mod(a,n))"  function and Mathematica's "MultiplicativeOrder[a,n]"
       function.

   znprimroot
       Given a positive integer "n", returns the smallest primitive root of "(Z/nZ)^*", or "undef"  if  no  root
       exists.   A  root  exists when "euler_phi($n) == carmichael_lambda($n)", which will be true for all prime
       "n" and some composites.

       OEIS A033948 <http://oeis.org/A033948> is a sequence of integers where the primitive root  exists,  while
       OEIS  A046145  <http://oeis.org/A046145>  is  a  list of the smallest primitive roots, which is what this
       function produces.

   is_primitive_root
       Given two non-negative numbers "a" and "n", returns 1 if "a" is a primitive root modulo  "n",  and  0  if
       not.  If "a" is a primitive root, then euler_phi(n) is the smallest "e" for which "a^e = 1 mod n".

   znlog
         $k = znlog($a, $g, $p)

       Returns the integer "k" that solves the equation "a = g^k mod p", or undef if no solution is found.  This
       is the discrete logarithm problem.

       The implementation for native integers first applies Silver-Pohlig-Hellman on the group order to possibly
       reduce  the  problem  to  a set of smaller problems.  The solutions are then performed using a mixture of
       trial, Shanks' BSGS, and Pollard's DLP Rho.

       The PP implementation is less sophisticated, with only a memory-heavy BSGS being used.

   legendre_phi
         $phi = legendre_phi(1000000000, 41);

       Given a non-negative integer "n" and a non-negative prime number "a", returns the Legendre  phi  function
       (also  called  Legendre's sum).  This is the count of positive integers <= "n" which are not divisible by
       any of the first "a" primes.

   inverse_li
         $approx_prime_count = inverse_li(1000000000);

       Given a non-negative integer "n", returns the least integer value "k" such that Li(k) >= n>.   Since  the
       logarithmic  integral  Li(n) is a good approximation to the number of primes less than "n", this function
       is a good simple approximation to the nth prime.

   numtoperm
         @p = numtoperm(10,654321);  # @p=(1,8,2,7,6,5,3,4,9,0)

       Given a non-negative integer "n" and integer "k", return the rank "k" lexicographic  permutation  of  "n"
       elements.  "k" will be interpreted as mod "n!".

       This will match iteration number "k" (zero based) of "forperm".

       This  corresponds  to  Pari's  "numtoperm(n,k)"  function,  though  Pari  uses an implementation specific
       ordering rather than lexicographic.

   permtonum
         $k = permtonum([1,8,2,7,6,5,3,4,9,0]);  # $k = 654321

       Given an array reference containing integers from 0 to "n", returns the lexicographic permutation rank of
       the set.  This is the inverse of the "numtoperm" function.  All integers up to "n" must be present.

       This will match iteration number "k" (zero based) of "forperm".  The result will be between 0 and "n!-1".

       This corresponds to Pari's permtonum(n) function, though Pari uses an  implementation  specific  ordering
       rather than lexicographic.

   randperm
         @p = randperm(100);   # returns shuffled 0..99
         @p = randperm(100,4)  # returns 4 elements from shuffled 0..99
         @s = @data[randperm(1+$#data)];    # shuffle an array
         @p = @data[randperm(1+$#data,2)];  # pick 2 from an array

       With a single argument "n", this returns a random permutation of the values from 0 to "n-1".

       When  given a second argument "k", the returned list will have only "k" elements.  This is more efficient
       than truncating the full shuffled list.

       The randomness comes from our CSPRNG.

   shuffle
         @shuffled = shuffle(@data);

       Takes a list as input, and returns a random permutation of the list.  Like randperm, the randomness comes
       from our CSPRNG.

       This function is functionally identical to the "shuffle" function in List::Util.  The only difference  is
       the random source (Chacha20 with better randomness, a larger period, and a larger state).  This does make
       it slower.

       If  the  entire  shuffled  array  is desired, this is faster than slicing with "randperm" as shown in its
       example above.  If, however, a "pick" operation is desired, e.g. pick 2  random  elements  from  a  large
       array, then the slice technique can be hundreds of times faster.

RANDOM NUMBERS

   OVERVIEW
       Prior  to  version  5.20,  Perl's "rand" function used the system rand function.  This meant it varied by
       system, and was almost always a poor choice.  For 5.20, Perl standardized on "drand48" and  includes  the
       source so there are no system dependencies.  While this was an improvement, "drand48" is not a good PRNG.
       It   really   only   has   32   bits   of   random   values,  and  fails  many  statistical  tests.   See
       <http://www.pcg-random.org/statistical-tests.html> for more information.

       There are much better choices for standard random number generators, such as the Mersenne  Twister,  PCG,
       or  Xoroshiro128+.   Someday  perhaps  Perl  will get one of these to replace drand48.  In the mean time,
       Math::Random::MTwist provides numerous features and excellent performance, or this module.

       Since we often deal with random primes for cryptographic purposes, we have additional requirements.  This
       module uses a CSPRNG for its random stream.  In particular, ChaCha20, which is the same algorithm used by
       BSD's "arc4random" and "/dev/urandom" on BSD and Linux 4.8+.  Seeding is performed at startup  using  the
       Win32 Crypto API (on Windows), "/dev/urandom", "/dev/random", or Crypt::PRNG, whichever is found first.

       We  use  the original ChaCha definition rather than RFC7539.  This means a 64-bit counter, resulting in a
       period of 2^72 bytes or 2^68 calls to drand or <irand64>.  This compares favorably to the 2^48 period  of
       Perl's  "drand48".  It has a 512-bit state which is significantly larger than the 48-bit "drand48" state.
       When seeding, 320 bits (40 bytes) are used.  Among other things, this means all  52!  permutations  of  a
       shuffled card deck are possible, which is not true of "shuffle" in List::Util.

       One might think that performance would suffer from using a CSPRNG, but benchmarking shows it is less than
       one  might  expect.  does not seem to be the case.  The speed of irand, irand64, and drand are within 20%
       of the fastest existing modules using non-CSPRNG methods, and 2 to 20 times faster than  most.   While  a
       faster  underlying  RNG  is  useful, the Perl call interface overhead is a majority of the time for these
       calls.  Carefully tuning that interface is critical.

       For performance on large amounts of data, see the tables in "random_bytes".

       Each thread uses its own context, meaning seeding in one thread has  no  impact  on  other  threads.   In
       addition  to  improved  security,  this  is  better for performance than a single context with locks.  If
       explicit control of multiple independent streams  are  needed  then  using  a  more  specific  module  is
       recommended.  I believe Crypt::PRNG (part of CryptX) and Bytes::Random::Secure are good alternatives.

       Using  the  ":rand"  export option will define "rand" and "srand" as similar but improved versions of the
       system functions of the same name, as well as "irand" and "irand64".

   irand
         $n32 = irand;     # random 32-bit integer

       Returns a random 32-bit integer using the CSPRNG.

   irand64
         $n64 = irand64;   # random 64-bit integer

       Returns a random 64-bit integer using the CSPRNG (on 64-bit Perl).

   drand
         $f = drand;       # random floating point value in [0,1)
         $r = drand(25.33);   # random floating point value in [0,25.33)

       Returns a random NV (Perl's native floating point) using the CSPRNG.  The API is similar to Perl's "rand"
       but giving better results.

       The number of bits returned is equal to the number of significand bits of the NV type used  in  the  Perl
       build.  By default Perl uses doubles and the returned values have 53 bits (even on 32-bit Perl).  If Perl
       is built with long double or quadmath support, each value may have 64 or even 113 bits.  On newer  Perls,
       one can check the Config variable "nvmantbits" to see how many are filled.

       This  gives  substantially  better  quality  random numbers than the default Perl "rand" function.  Among
       other things, on modern Perl's, "rand" uses drand48, which has 32 bits of not-very-good randomness and 16
       more bits of obvious patterns (e.g. the 48th bit alternates, the 47th has a period of 4,  etc.).   Output
       from "rand" fails at least 5 tests from the TestU01 SmallCrush suite, while our function easily passes.

       With the ":rand" tag, this function is additionally exported as "rand".

   random_bytes
         $str = random_bytes(32);     # 32 random bytes

       Given  an  unsigned  number  "n"  of  bytes,  returns  a  string filled with random data from the CSPRNG.
       Performance for large quantities:

           Module/Method                  Rate   Type
           -------------             ---------   ----------------------

           Math::Prime::Util::GMP    1067 MB/s   CSPRNG - ISAAC
           ntheory random_bytes       384 MB/s   CSPRNG - ChaCha20
           Crypt::PRNG                140 MB/s   CSPRNG - Fortuna
           Crypt::OpenSSL::Random      32 MB/s   CSPRNG - SHA1 counter
           Math::Random::ISAAC::XS     15 MB/s   CSPRNG - ISAAC
           ntheory entropy_bytes       13 MB/s   CSPRNG - /dev/urandom
           Crypt::Random               12 MB/s   CSPRNG - /dev/urandom
           Crypt::Urandom              12 MB/s   CSPRNG - /dev/urandom
           Bytes::Random::Secure        6 MB/s   CSPRNG - ISAAC
           ntheory pure perl ISAAC      5 MB/s   CSPRNG - ISAAC (no XS)
           Math::Random::ISAAC::PP      2.5 MB/s CSPRNG - ISAAC (no XS)
           ntheory pure perl ChaCha     1.0 MB/s CSPRNG - ChaCha20 (no XS)
           Data::Entropy::Algorithms    0.5 MB/s CSPRNG - AES-CTR

           Math::Random::MTwist       927 MB/s   PRNG - Mersenne Twister
           Bytes::Random::XS          109 MB/s   PRNG - drand48
           pack CORE::rand             25 MB/s   PRNG - drand48 (no XS)
           Bytes::Random                2.6 MB/s PRNG - drand48 (no XS)

   entropy_bytes
       Similar to random_bytes, but directly using the entropy source.  This is not normally recommended  as  it
       can  consume  shared  system  resources  and  is  typically  slow  --  on  the computer that produced the
       "random_bytes" chart above, using "dd" generated the same 13  MB/s  performance  as  our  "entropy_bytes"
       function.

       The actual performance will be highly system dependent.

   urandomb
         $n32 = urandomb(32);    # Classic irand32, returns a UV
         $n   = urandomb(1024);  # Random integer less than 2^1024

       Given  a  number  of  bits  "b",  returns  a random unsigned integer less than "2^b".  The result will be
       uniformly distributed between 0 and "2^b-1" inclusive.

   urandomm
         $n = urandomm(100);    # random integer in [0,99]
         $n = urandomm(1024);   # random integer in [0,1023]

       Given a positive integer "n", returns a random unsigned integer less  than  "n".   The  results  will  be
       uniformly distributed between 0 and "n-1" inclusive.  Care is taken to prevent modulo bias.

   csrand
       Takes  a  binary  string  "data"  as input and seeds the internal CSPRNG.  This is not normally needed as
       system entropy is used as a seed on startup.  For best security this  should  be  16-128  bytes  of  good
       entropy.  No more than 1024 bytes will be used.

       With no argument, reseeds using system entropy, which is preferred.

       If  the  "secure" configuration has been set, then this will croak if given an argument.  This allows for
       control of reseeding with entropy the module gets itself, but not user supplied.

   srand
       Takes a single UV argument and seeds the CSPRNG with it, as well as returning  it.   If  no  argument  is
       given,  a  new  UV  seed  is  constructed.   Note that this creates a very weak seed from a cryptographic
       standpoint, so it is useful for testing or simulations but "csrand" is recommended,  or  keep  using  the
       system entropy default seed.

       The API is nearly identical to the system function "srand".  It uses a UV which can be 64-bit rather than
       always 32-bit.  The behaviour for "undef", empty string, empty list, etc. is slightly different (we treat
       these as 0).

       This function is not exported with the ":all" tag, but is with ":rand".

       If  the  "secure"  configuration has been set, this function will croak.  Manual seeding using "srand" is
       not compatible with cryptographic security.

   rand
       An alias for "drand", not exported unless the ":rand" tag is used.

   random_factored_integer
         my($n, $factors) = random_factored_integer(1000000);

       Given a positive non-zero input "n", returns a uniform random integer in the range 1 to "n",  along  with
       an array reference containing the factors.

       This  uses  Kalai's  algorithm for generating random integers along with their factorization, and is much
       faster than the naive method of  generating  random  integers  followed  by  a  factorization.   A  later
       implementation may use Bach's more efficient algorithm.

RANDOM PRIMES

   random_prime
         my $small_prime = random_prime(1000);      # random prime <= limit
         my $rand_prime = random_prime(100, 10000); # random prime within a range

       Returns  a  pseudo-randomly selected prime that will be greater than or equal to the lower limit and less
       than or equal to the upper limit.  If no lower limit is given, 2 is implied.  Returns undef if no  primes
       exist within the range.

       The  goal  is  to return a uniform distribution of the primes in the range, meaning for each prime in the
       range, the chances are equally likely that it will be seen.  This  is  removes  from  consideration  such
       algorithms as "PRIMEINC", which although efficient, gives very non-random output.  This also implies that
       the  numbers  will  not  be  evenly  distributed,  since  the  primes are not evenly distributed.  Stated
       differently, the random prime functions return a uniformly selected prime from the set of  primes  within
       the  range.   Hence  given  "random_prime(1000)",  the  numbers 2, 3, 487, 631, and 997 all have the same
       probability of being returned.

       For small numbers, a random index selection is done, which gives ideal uniformity and is  very  efficient
       with small inputs.  For ranges larger than this ~16-bit threshold but within the native bit size, a Monte
       Carlo method is used.  This also gives ideal uniformity and can be very fast for reasonably sized ranges.
       For  even  larger  numbers, we partition the range, choose a random partition, then select a random prime
       from the partition.  This gives some loss of uniformity but results in  many  fewer  bits  of  randomness
       being consumed as well as being much faster.

   random_ndigit_prime
         say "My 4-digit prime number is: ", random_ndigit_prime(4);

       Selects a random n-digit prime, where the input is an integer number of digits.  One of the primes within
       that range (e.g. 1000 - 9999 for 4-digits) will be uniformly selected.

       If  the  number  of  digits  is greater than or equal to the maximum native type, then the result will be
       returned as a BigInt.  However, if the "nobigint"  configuration  option  is  on,  then  output  will  be
       restricted to native size numbers, and requests for more digits than natively supported will result in an
       error.  For better performance with large bit sizes, install Math::Prime::Util::GMP.

   random_nbit_prime
         my $bigprime = random_nbit_prime(512);

       Selects a random n-bit prime, where the input is an integer number of bits.  A prime with the nth bit set
       will be uniformly selected.

       For  bit  sizes  of  64 and lower, "random_prime" is used, which gives completely uniform results in this
       range.  For sizes larger than 64, Algorithm 1 of Fouque and Tibouchi (2011) is used, wherein we select  a
       random  odd  number  for the lower bits, then loop selecting random upper bits until the result is prime.
       This allows a more uniform distribution than the  general  "random_prime"  case  while  running  slightly
       faster  (in  contrast,  for large bit sizes "random_prime" selects a random upper partition then loops on
       the values within the partition, which very slightly skews the results towards smaller numbers).

       The result will be a BigInt if the number of bits is greater  than  the  native  bit  size.   For  better
       performance with large bit sizes, install Math::Prime::Util::GMP.

   random_strong_prime
         my $bigprime = random_strong_prime(512);

       Constructs an n-bit strong prime using Gordon's algorithm.  We consider a strong prime p to be one where

       •   p is large.   This function requires at least 128 bits.

       •   p-1 has a large prime factor r.

       •   p+1 has a large prime factor sr-1 has a large prime factor t

       Using  a  strong  prime in cryptography guards against easy factoring with algorithms like Pollard's Rho.
       Rivest and Silverman (1999) present a case that using strong  primes  is  unnecessary,  and  most  modern
       cryptographic systems agree.  First, the smoothness does not affect more modern factoring methods such as
       ECM.   Second,  modern  factoring  methods  like GNFS are far faster than either method so make the point
       moot.  Third, due to key size growth and advances in factoring and attacks, for practical purposes, using
       large random primes offer security equivalent to strong primes.

       Similar to "random_nbit_prime", the result will be a BigInt if the number of bits  is  greater  than  the
       native bit size.  For better performance with large bit sizes, install Math::Prime::Util::GMP.

   random_proven_prime
         my $bigprime = random_proven_prime(512);

       Constructs      an      n-bit      random      proven     prime.      Internally     this     may     use
       "is_provable_prime"("random_nbit_prime") or "random_maurer_prime" depending on the platform and bit size.

   random_proven_prime_with_cert
         my($n, $cert) = random_proven_prime_with_cert(512)

       Similar to "random_proven_prime", but returns a two-element array containing  the  n-bit  provable  prime
       along  with  a  primality certificate.  The certificate is the same as produced by "prime_certificate" or
       "is_provable_prime_with_cert", and can be parsed by "verify_prime" or any other software that understands
       MPU primality certificates.

   random_maurer_prime
         my $bigprime = random_maurer_prime(512);

       Construct an n-bit provable prime, using the FastPrime algorithm of Ueli Maurer (1995).  This is the same
       algorithm used by Crypt::Primes.  Similar to "random_nbit_prime", the result will  be  a  BigInt  if  the
       number of bits is greater than the native bit size.

       The  performance  with  Math::Prime::Util::GMP  installed  is  hundreds  of times faster, so it is highly
       recommended.

       The differences between this function and that in Crypt::Primes are described in the "SEE ALSO" section.

       Internally this additionally runs the BPSW probable prime test on every partial result, and constructs  a
       primality  certificate for the final result, which is verified.  These provide additional checks that the
       resulting value has been properly constructed.

       If you don't need absolutely proven results, then it is somewhat faster to use "random_nbit_prime" either
       by    itself    or    with    some    additional    tests,     e.g.      "miller_rabin_random"     and/or
       "is_frobenius_underwood_pseudoprime".   One could also run is_provable_prime on the result, but this will
       be slow.

   random_maurer_prime_with_cert
         my($n, $cert) = random_maurer_prime_with_cert(512)

       As with "random_maurer_prime", but returns a two-element array containing the n-bit provable prime  along
       with  a  primality  certificate.   The  certificate  is  the  same  as produced by "prime_certificate" or
       "is_provable_prime_with_cert", and can be parsed by "verify_prime" or any other software that understands
       MPU primality certificates.  The proof construction consists of a single chain of "BLS3" types.

   random_shawe_taylor_prime
         my $bigprime = random_shawe_taylor_prime(8192);

       Construct an n-bit provable prime, using the Shawe-Taylor algorithm in section C.6 of FIPS  186-4.   This
       uses  512 bits of randomness and SHA-256 as the hash.  This is a slightly simpler and older (1986) method
       than Maurer's 1999 construction.  It is a bit faster than Maurer's method, and uses less  system  entropy
       for  large  sizes.   The  primary reason to use this rather than Maurer's method is to use the FIPS 186-4
       algorithm.

       Similar to "random_nbit_prime", the result will be a BigInt if the number of bits  is  greater  than  the
       native  bit size.  For better performance with large bit sizes, install Math::Prime::Util::GMP.  Also see
       "random_maurer_prime" and "random_proven_prime".

       Internally this additionally runs the BPSW probable prime test on every partial result, and constructs  a
       primality  certificate for the final result, which is verified.  These provide additional checks that the
       resulting value has been properly constructed.

   random_shawe_taylor_prime_with_cert
         my($n, $cert) = random_shawe_taylor_prime_with_cert(4096)

       As with "random_shawe_taylor_prime", but returns a two-element array containing the n-bit provable  prime
       along  with  a  primality certificate.  The certificate is the same as produced by "prime_certificate" or
       "is_provable_prime_with_cert", and can be parsed by "verify_prime" or any other software that understands
       MPU primality certificates.  The proof construction consists of a single chain of "Pocklington" types.

   random_semiprime
       Takes a positive integer number of bits "bits", returns a random semiprime of exactly "bits"  bits.   The
       result has exactly two prime factors (hence semiprime).

       The  factors  will  be  approximately equal size, which is typical for cryptographic use.  For example, a
       64-bit semiprime of this type is the product of two 32-bit primes.  "bits" must be 4 or greater.

       Some effort is taken to select uniformly from the universe of "bits"-bit semiprimes.  This takes slightly
       longer than some methods that do not select uniformly.

   random_unrestricted_semiprime
       Takes a positive integer number of bits "bits", returns a random semiprime of exactly "bits"  bits.   The
       result has exactly two prime factors (hence semiprime).

       The factors are uniformly selected from the universe of all "bits"-bit semiprimes.  This means semiprimes
       with one factor equal to 2 will be most common, 3 next most common, etc.  "bits" must be 3 or greater.

       Some effort is taken to select uniformly from the universe of "bits"-bit semiprimes.  This takes slightly
       longer than some methods that do not select uniformly.

UTILITY FUNCTIONS

   prime_precalc
         prime_precalc( 1_000_000_000 );

       Let the module prepare for fast operation up to a specific number.  It is not necessary to call this, but
       it  gives  you  more control over when memory is allocated and gives faster results for multiple calls in
       some cases.  In the current implementation this will  calculate  a  sieve  for  all  numbers  up  to  the
       specified number.

   prime_memfree
         prime_memfree;

       Frees  any extra memory the module may have allocated.  Like with "prime_precalc", it is not necessary to
       call this, but if you're done making calls, or want things cleanup up, you  can  use  this.   The  object
       method might be a better choice for complicated uses.

   Math::Prime::Util::MemFree->new
         my $mf = Math::Prime::Util::MemFree->new;
         # perform operations.  When $mf goes out of scope, memory will be recovered.

       This  is  a  more robust way of making sure any cached memory is freed, as it will be handled by the last
       "MemFree" object leaving scope.  This means if your routines were inside an eval that died,  things  will
       still  get  cleaned  up.  If you call another function that uses a MemFree object, the cache will stay in
       place because you still have an object.

   prime_get_config
         my $cached_up_to = prime_get_config->{'precalc_to'};

       Returns a reference to a hash of the current settings.   The  hash  is  copy  of  the  configuration,  so
       changing it has no effect.  The settings include:

         verbose         verbose level.  1 or more will result in extra output.
         precalc_to      primes up to this number are calculated
         maxbits         the maximum number of bits for native operations
         xs              0 or 1, indicating the XS code is available
         gmp             0 or 1, indicating GMP code is available
         maxparam        the largest value for most functions, without bigint
         maxdigits       the max digits in a number, without bigint
         maxprime        the largest representable prime, without bigint
         maxprimeidx     the index of maxprime, without bigint
         assume_rh       whether to assume the Riemann hypothesis (default 0)
         secure          disable ability to manually seed the CSPRNG

   prime_set_config
         prime_set_config( assume_rh => 1 );

       Allows setting of some parameters.  Currently the only parameters are:

         verbose      The default setting of 0 will generate no extra output.
                      Setting to 1 or higher results in extra output.  For
                      example, at setting 1 the AKS algorithm will indicate
                      the chosen r and s values.  At setting 2 it will output
                      a sequence of dots indicating progress.  Similarly, for
                      random_maurer_prime, setting 3 shows real time progress.
                      Factoring large numbers is another place where verbose
                      settings can give progress indications.

         xs           Allows turning off the XS code, forcing the Pure Perl
                      code to be used.  Set to 0 to disable XS, set to 1 to
                      re-enable.  You probably will never want to do this.

         gmp          Allows turning off the use of L<Math::Prime::Util::GMP>,
                      which means using Pure Perl code for big numbers.  Set
                      to 0 to disable GMP, set to 1 to re-enable.
                      You probably will never want to do this.

         assume_rh    Allows functions to assume the Riemann hypothesis is
                      true if set to 1.  This defaults to 0.  Currently this
                      setting only impacts prime count lower and upper
                      bounds, but could later be applied to other areas such
                      as primality testing.  A later version may also have a
                      way to indicate whether no RH, RH, GRH, or ERH is to
                      be assumed.

         secure       The CSPRNG may no longer be manually seeded.  Once set,
                      this option cannot be disabled.  L</srand> will croak
                      if called, and L</csrand> will croak if called with any
                      arguments.  L</csrand> with no arguments is still allowed,
                      as that will use system entropy without giving anything
                      to the caller.  The point of this option is to ensure that
                      any called functions do not try to control the RNG.

FACTORING FUNCTIONS

   factor
         my @factors = factor(3_369_738_766_071_892_021);
         # returns (204518747,16476429743)

       Produces  the  prime factors of a positive number input, in numerical order.  The product of the returned
       factors will be equal to the input.  "n = 1" will return an empty list, and "n = 0" will return 0.   This
       matches Pari.

       In    scalar   context,   returns   -(n),   the   total   number   of   prime   factors   (OEIS   A001222
       <http://oeis.org/A001222>).   This  corresponds  to  Pari's  bigomega(n)   function   and   Mathematica's
       "PrimeOmega[n]"  function.   This is same result that we would get if we evaluated the resulting array in
       scalar context.

       The current algorithm does a little trial division, a check for perfect powers, followed by  combinations
       of Pollard's Rho, SQUFOF, and Pollard's p-1.  The combination is applied to each non-prime factor found.

       Factoring  bigints  works  with pure Perl, and can be very handy on 32-bit machines for numbers just over
       the 32-bit limit, but it can be very slow for  "hard"  numbers.   Installing  the  Math::Prime::Util::GMP
       module  will  speed up bigint factoring a lot, and all future effort on large number factoring will be in
       that module.  If you do not have that module for some reason, use the GMP or Pari version  of  bigint  if
       possible (e.g. "use bigint try => 'GMP,Pari'"), which will run 2-3x faster (though still 100x slower than
       the real GMP code).

   factor_exp
         my @factor_exponent_pairs = factor_exp(29513484000);
         # returns ([2,5], [3,4], [5,3], [7,2], [11,1], [13,2])
         # factor(29513484000)
         # returns (2,2,2,2,2,3,3,3,3,5,5,5,7,7,11,13,13)

       Produces  pairs  of  prime  factors and exponents in numerical factor order.  This is more convenient for
       some algorithms.  This is the same form that Mathematica's "FactorInteger[n]" and  Pari/GP's  "factorint"
       functions return.  Note that Math::Pari transposes the Pari result matrix.

       In   scalar   context,   returns   ω(n),   the   number   of   unique   prime   factors   (OEIS   A001221
       <http://oeis.org/A001221>).  This corresponds to Pari's omega(n) function and Mathematica's  "PrimeNu[n]"
       function.  This is same result that we would get if we evaluated the resulting array in scalar context.

       The  internals  are  identical  to  "factor",  so all comments there apply.  Just the way the factors are
       arranged is different.

   divisors
         my @divisors = divisors(30);   # returns (1, 2, 3, 5, 6, 10, 15, 30)

       Produces all the divisors of a positive number input, including 1 and the input number.  The divisors are
       a power set of multiplications of the prime factors, returned as a uniqued sorted list.   The  result  is
       identical to that of Pari's "divisors" and Mathematica's "Divisors[n]" functions.

       In  scalar  context  this  returns the sigma0 function (see Hardy and Wright section 16.7).  This is OEIS
       A000005 <http://oeis.org/A000005>.  The results is identical to evaluating the array in  scalar  context,
       but more efficient.  This corresponds to Pari's "numdiv" and Mathematica's "DivisorSigma[0,n]" functions.

       Also see the "for_divisors" functions for looping over the divisors.

   trial_factor
         my @factors = trial_factor($n);

       Produces  the  prime  factors  of  a positive number input.  The factors will be in numerical order.  For
       large inputs this will be very slow.  Like all the specific-algorithm  *_factor  routines,  this  is  not
       exported unless explicitly requested.

   fermat_factor
         my @factors = fermat_factor($n);

       Produces  factors,  not  necessarily  prime,  of  the positive number input.  The particular algorithm is
       Knuth's algorithm C.  For small inputs this will be very fast, but it slows down  quite  rapidly  as  the
       number  of  digits  increases.   It  is  very fast for inputs with a factor close to the midpoint (e.g. a
       semiprime p*q where p and q are the same number of digits).

   holf_factor
         my @factors = holf_factor($n);

       Produces factors, not necessarily prime, of the positive number input.  An optional number of rounds  can
       be  given  as  a second parameter.  It is possible the function will be unable to find a factor, in which
       case a single element, the input,  is  returned.   This  uses  Hart's  One  Line  Factorization  with  no
       premultiplier.   It is an interesting alternative to Fermat's algorithm, and there are some inputs it can
       rapidly factor.  Overall it has the same advantages and disadvantages as Fermat's method.

   lehman_factor
         my @factors = lehman_factor($n);

       Produces factors, not necessarily prime, of the positive number input.  An optional argument,  defaulting
       to  0 (false), indicates whether to run trial division.  Without trial division, is possible the function
       will be unable to find a factor, in which case a single element, the input, is returned.

       This is Warren D. Smith's Lehman core with minor modifications.  It is limited to  42-bit  inputs:  "n  <
       8796393022208".

   squfof_factor
         my @factors = squfof_factor($n);

       Produces  factors, not necessarily prime, of the positive number input.  An optional number of rounds can
       be given as a second parameter.  It is possible the function will be unable to find a  factor,  in  which
       case a single element, the input, is returned.  This function typically runs very fast.

   prho_factor
   pbrent_factor
         my @factors = prho_factor($n);
         my @factors = pbrent_factor($n);

         # Use a very small number of rounds
         my @factors = prho_factor($n, 1000);

       Produces  factors, not necessarily prime, of the positive number input.  An optional number of rounds can
       be given as a second parameter.  These attempt to find a single factor  using  Pollard's  Rho  algorithm,
       either  the  original version or Brent's modified version.  These are more specialized algorithms usually
       used for pre-factoring very large inputs, as they are very fast at finding small factors.

   pminus1_factor
         my @factors = pminus1_factor($n);
         my @factors = pminus1_factor($n, 1_000);          # set B1 smoothness
         my @factors = pminus1_factor($n, 1_000, 50_000);  # set B1 and B2

       Produces factors, not necessarily prime, of the positive number input.  This is Pollard's  "p-1"  method,
       using two stages with default smoothness settings of 1_000_000 for B1, and "10 * B1" for B2.  This method
       can rapidly find a factor "p" of "n" where "p-1" is smooth (it has no large factors).

   pplus1_factor
         my @factors = pplus1_factor($n);
         my @factors = pplus1_factor($n, 1_000);          # set B1 smoothness

       Produces  factors,  not necessarily prime, of the positive number input.  This is Williams' "p+1" method,
       using one stage and two predefined initial points.

   ecm_factor
         my @factors = ecm_factor($n);
         my @factors = ecm_factor($n, 100, 400, 10);      # B1, B2, # of curves

       Produces factors, not necessarily prime, of the positive number input.  This is the elliptic curve method
       using two stages.

MATHEMATICAL FUNCTIONS

   ExponentialIntegral
         my $Ei = ExponentialIntegral($x);

       Given a non-zero floating point input "x", this returns the  real-valued  exponential  integral  of  "x",
       defined as the integral of "e^t/t dt" from "-infinity" to "x".

       If the bignum module has been loaded, all inputs will be treated as if they were Math::BigFloat objects.

       For non-BigInt/BigFloat inputs, the result should be accurate to at least 14 digits.

       For BigInt / BigFloat inputs, full accuracy and performance is obtained only if Math::Prime::Util::GMP is
       installed.   If  this module is not available, then other methods are used and give at least 14 digits of
       accuracy: continued fractions ("x < -1"), rational Chebyshev approximation (" -1 < x < 0"), a  convergent
       series (small positive "x"), or an asymptotic divergent series (large positive "x").

   LogarithmicIntegral
         my $li = LogarithmicIntegral($x)

       Given a positive floating point input, returns the floating point logarithmic integral of "x", defined as
       the  integral  of  "dt/ln  t"  from  0  to "x".  If given a negative input, the function will croak.  The
       function returns 0 at "x = 0", and "-infinity" at "x = 1".

       This is often known as li(x).  A related function is the offset logarithmic integral, sometimes known  as
       Li(x)  which  avoids  the  singularity at 1.  It may be defined as "Li(x) = li(x) - li(2)".  Crandall and
       Pomerance use the term "li0" for this function, and define "li(x)  =  Li0(x)  -  li0(2)".   Due  to  this
       terminology confusion, it is important to check which exact definition is being used.

       If the bignum module has been loaded, all inputs will be treated as if they were Math::BigFloat objects.

       For non-BigInt/BigFloat objects, the result should be accurate to at least 14 digits.

       For BigInt / BigFloat inputs, full accuracy and performance is obtained only if Math::Prime::Util::GMP is
       installed.

   RiemannZeta
         my $z = RiemannZeta($s);

       Given  a  floating point input "s" where "s >= 0", returns the floating point value of ζ(s)-1, where ζ(s)
       is the Riemann zeta function.  One is subtracted to ensure maximum precision for  large  values  of  "s".
       The  zeta function is the sum from k=1 to infinity of "1 / k^s".  This function only uses real arguments,
       so is basically the Euler Zeta function.

       If the bignum module has been loaded, all inputs will be treated as if they were Math::BigFloat objects.

       For non-BigInt/BigFloat objects, the result should be accurate to at least 14 digits.  The XS code uses a
       rational Chebyshev approximation between 0.5 and 5, and a series for other values.  The PP code  uses  an
       identical series for all values.

       For BigInt / BigFloat inputs, full accuracy and performance is obtained only if Math::Prime::Util::GMP is
       installed.   If  this module is not available, then other methods are used and give at least 14 digits of
       accuracy:  Either  Borwein  (1991)  algorithm  2,  or  the  basic  series.    Math::BigFloat   RT   43692
       <https://rt.cpan.org/Ticket/Display.html?id=43692>  can produce incorrect high-accuracy computations when
       GMP is not used.

   RiemannR
         my $r = RiemannR($x);

       Given a positive non-zero floating point input, returns the floating point value of Riemann's R function.
       Riemann's R function gives a very close approximation to the prime counting function.

       If the bignum module has been loaded, all inputs will be treated as if they were Math::BigFloat objects.

       For non-BigInt/BigFloat objects, the result should be accurate to at least 14 digits.

       For BigInt / BigFloat inputs, full accuracy and performance is obtained only if Math::Prime::Util::GMP is
       installed.  If this module are not available, accuracy should be 35 digits.

   LambertW
       Returns the principal branch of the Lambert W function of a real value.  Given a value  "k"  this  solves
       for  "W" in the equation "k = We^W".  The input must not be less than "-1/e".  This corresponds to Pari's
       "lambertw" function and Mathematica's "ProductLog" / "LambertW" function.

       This function handles all real value inputs with non-complex return values.  This is a superset of Pari's
       "lambertw" which is similar but only  for  positive  arguments.   Mathematica's  function  is  much  more
       detailed, with both branches, complex arguments, and complex results.

       Calculation  will  be done with C long doubles if the input is a standard scalar, but if bignum is in use
       or if the input is a BigFloat type, then extended precision results will be used.

       Speed of the native code is about half of the fastest native code (Veberic's C++), and about  30x  faster
       than Pari/GP.  However the bignum calculation is slower than Pari/GP.

   Pi
         my $tau = 2 * Pi;     # $tau = 6.28318530717959
         my $tau = 2 * Pi(40); # $tau = 6.283185307179586476925286766559005768394

       With no arguments, returns the value of Pi as an NV.  With a positive integer argument, returns the value
       of  Pi  with the requested number of digits (including the leading 3).  The return value will be an NV if
       the number of digits fits in an NV (typically 15 or less), or a Math::BigFloat object otherwise.

       For sizes over 10k digits, having either Math::Prime::Util::GMP or Math::BigInt::GMP installed will  help
       performance.  For sizes over 50k the one is highly recommended.

EXAMPLES

       Print Fibonacci numbers:

           perl -Mntheory=:all -E 'say lucasu(1,-1,$_) for 0..20'

       Print strong pseudoprimes to base 17 up to 10M:

           # Similar to A001262's isStrongPsp function, but much faster
           perl -MMath::Prime::Util=:all -E 'forcomposites { say if is_strong_pseudoprime($_,17) } 10000000;'

       Print some primes above 64-bit range:

           perl -MMath::Prime::Util=:all -Mbigint -E 'my $start=100000000000000000000; say join "\n", @{primes($start,$start+1000)}'

           # Another way
           perl -MMath::Prime::Util=:all -E 'forprimes { say } "100000000000000000039", "100000000000000000993"'

           # Similar using Math::Pari:
           # perl -MMath::Pari=:int,PARI,nextprime -E 'my $start = PARI "100000000000000000000"; my $end = $start+1000; my $p=nextprime($start); while ($p <= $end) { say $p; $p = nextprime($p+1); }'

       Generate Carmichael numbers (OEIS A002997 <http://oeis.org/A002997>):

           perl -Mntheory=:all -E 'foroddcomposites { say if is_carmichael($_) } 1e6;'

           # Less efficient, similar to Mathematica or MAGMA:
           perl -Mntheory=:all -E 'foroddcomposites { say if $_ % carmichael_lambda($_) == 1 } 1e6;'

       Examining the η3(x) function of Planat and Solé (2011):

         sub nu3 {
           my $n = shift;
           my $phix = chebyshev_psi($n);
           my $nu3 = 0;
           foreach my $nu (1..3) {
             $nu3 += (moebius($nu)/$nu)*LogarithmicIntegral($phix**(1/$nu));
           }
           return $nu3;
         }
         say prime_count(1000000);
         say prime_count_approx(1000000);
         say nu3(1000000);

       Construct and use a Sophie-Germain prime iterator:

         sub make_sophie_germain_iterator {
           my $p = shift || 2;
           my $it = prime_iterator($p);
           return sub {
             do { $p = $it->() } while !is_prime(2*$p+1);
             $p;
           };
         }
         my $sgit = make_sophie_germain_iterator();
         print $sgit->(), "\n"  for 1 .. 10000;

       Project Euler, problem 3 (Largest prime factor):

         use Math::Prime::Util qw/factor/;
         use bigint;  # Only necessary for 32-bit machines.
         say 0+(factor(600851475143))[-1]

       Project Euler, problem 7 (10001st prime):

         use Math::Prime::Util qw/nth_prime/;
         say nth_prime(10_001);

       Project Euler, problem 10 (summation of primes):

         use Math::Prime::Util qw/sum_primes/;
         say sum_primes(2_000_000);
         #  ... or do it a little more manually ...
         use Math::Prime::Util qw/forprimes/;
         my $sum = 0;
         forprimes { $sum += $_ } 2_000_000;
         say $sum;
         #  ... or do it using a big list ...
         use Math::Prime::Util qw/vecsum primes/;
         say vecsum( @{primes(2_000_000)} );

       Project Euler, problem 21 (Amicable numbers):

         use Math::Prime::Util qw/divisor_sum/;
         my $sum = 0;
         foreach my $x (1..10000) {
           my $y = divisor_sum($x)-$x;
           $sum += $x + $y if $y > $x && $x == divisor_sum($y)-$y;
         }
         say $sum;
         # Or using a pipeline:
         use Math::Prime::Util qw/vecsum divisor_sum/;
         say vecsum( map { divisor_sum($_) }
                     grep { my $y = divisor_sum($_)-$_;
                            $y > $_ && $_==(divisor_sum($y)-$y) }
                     1 .. 10000 );

       Project Euler, problem 41 (Pandigital prime), brute force command line:

         perl -MMath::Prime::Util=primes -MList::Util=first -E 'say first { /1/&&/2/&&/3/&&/4/&&/5/&&/6/&&/7/} reverse @{primes(1000000,9999999)};'

       Project Euler, problem 47 (Distinct primes factors):

         use Math::Prime::Util qw/pn_primorial factor_exp/;
         my $n = pn_primorial(4);  # Start with the first 4-factor number
         # factor_exp in scalar context returns the number of distinct prime factors
         $n++ while (factor_exp($n) != 4 || factor_exp($n+1) != 4 || factor_exp($n+2) != 4 || factor_exp($n+3) != 4);
         say $n;

       Project Euler, problem 69, stupid brute force solution (about 1 second):

         use Math::Prime::Util qw/euler_phi/;
         my ($maxn, $maxratio) = (0,0);
         foreach my $n (1..1000000) {
           my $ndivphi = $n / euler_phi($n);
           ($maxn, $maxratio) = ($n, $ndivphi) if $ndivphi > $maxratio;
         }
         say "$maxn  $maxratio";

       Here is the right way to do PE problem 69 (under 0.03s):

         use Math::Prime::Util qw/pn_primorial/;
         my $n = 0;
         $n++ while pn_primorial($n+1) < 1000000;
         say pn_primorial($n);

       Project Euler, problem 187, stupid brute force solution, 1 to 2 minutes:

         use Math::Prime::Util qw/forcomposites factor/;
         my $nsemis = 0;
         forcomposites { $nsemis++ if scalar factor($_) == 2; } int(10**8)-1;
         say $nsemis;

       Here  is  one of the best ways for PE187:  under 20 milliseconds from the command line.  Much faster than
       Pari, and competitive with Mathematica.

         use Math::Prime::Util qw/forprimes prime_count/;
         my $limit = shift || int(10**8);
         $limit--;
         my ($sum, $pc) = (0, 1);
         forprimes {
           $sum += prime_count(int($limit/$_)) + 1 - $pc++;
         } int(sqrt($limit));
         say $sum;

       To get the result of "matches" in Math::Factor::XS:

         use Math::Prime::Util qw/divisors/;
         sub matches {
           my @d = divisors(shift);
           return map { [$d[$_],$d[$#d-$_]] } 1..(@d-1)>>1;
         }
         my $n = 139650;
         say "$n = ", join(" = ", map { "$_->[0]·$_->[1]" } matches($n));

       or its "matches" function with the "skip_multiples" option:

         sub matches {
           my @d = divisors(shift);
           return map { [$d[$_],$d[$#d-$_]] }
                  grep { my $div=$d[$_]; !scalar(grep {!($div % $d[$_])} 1..$_-1) }
                  1..(@d-1)>>1; }
         }

       Compute OEIS A054903 <http://oeis.org/A054903> just like CRG4s Pari example:

         use Math::Prime::Util qw/forcomposite divisor_sum/;
         forcomposites {
           say if divisor_sum($_)+6 == divisor_sum($_+6)
         } 9,1e7;

       Construct the table shown in OEIS A046147 <http://oeis.org/A046147>:

         use Math::Prime::Util qw/znorder euler_phi gcd/;
         foreach my $n (1..100) {
           if (!znprimroot($n)) {
             say "$n -";
           } else {
             my $phi = euler_phi($n);
             my @r = grep { gcd($_,$n) == 1 && znorder($_,$n) == $phi } 1..$n-1;
             say "$n ", join(" ", @r);
           }
         }

       Find the 7-digit palindromic primes in the first 20k digits of Pi:

         use Math::Prime::Util qw/Pi is_prime/;
         my $pi = "".Pi(20000);  # make sure we only stringify once
         for my $pos (2 .. length($pi)-7) {
           my $s = substr($pi, $pos, 7);
           say "$s at $pos" if $s eq reverse($s) && is_prime($s);
         }

         # Or we could use the regex engine to find the palindromes:
         while ($pi =~ /(([1379])(\d)(\d)\d\4\3\2)/g) {
           say "$1 at ",pos($pi)-7 if is_prime($1)
         }

       The Bell numbers <https://en.wikipedia.org/wiki/Bell_number> B_n:

         sub B { my $n = shift; vecsum(map { stirling($n,$_,2) } 0..$n) }
         say "$_  ",B($_) for 1..50;

       Recognizing tetrahedral numbers (OEIS A000292 <http://oeis.org/A000292>):

         sub is_tetrahedral {
           my $n6 = vecprod(6,shift);
           my $k  = rootint($n6,3);
           vecprod($k,$k+1,$k+2) == $n6;
         }

       Recognizing powerful numbers (e.g. "ispowerful" from Pari/GP):

         sub ispowerful { 0 + vecall { $_->[1] > 1 } factor_exp(shift); }

       Convert from binary to hex (3000x faster than Math::BaseConvert):

         my $hex_string = todigitstring(fromdigits($bin_string,2),16);

       Calculate and print derangements using permutations:

         my @data = qw/a b c d/;
         forperm { say "@data[@_]" unless vecany { $_[$_]==$_ } 0..$#_ } @data;
         # Using forderange directly is faster

       Compute the subfactorial of n (OEIS A000166 <http://oeis.org/A000166>):

         sub subfactorial { my $n = shift;
           vecsum(map{ vecprod((-1)**($n-$_),binomial($n,$_),factorial($_)) }0..$n);
         }

       Compute subfactorial (number of derangements) using simple recursion:

         sub subfactorial { my $n = shift;
           use bigint;
           ($n < 1)  ?  1  :  $n * subfactorial($n-1) + (-1)**$n;
         }

PRIMALITY TESTING NOTES

       Above "2^64", "is_prob_prime" performs an extra-strong BPSW  test  <http://en.wikipedia.org/wiki/Baillie-
       PSW_primality_test>  which  is fast (a little less than the time to perform 3 Miller-Rabin tests) and has
       no known counterexamples.  If you trust the primality testing done by Pari,  Maple,  SAGE,  FLINT,  etc.,
       then  this function should be appropriate for you.  "is_prime" will do the same BPSW test as well as some
       additional testing, making it slightly more time consuming but less likely to  produce  a  false  result.
       This  is a little more stringent than Mathematica.  "is_provable_prime" constructs a primality proof.  If
       a certificate is requested, then either BLS75 theorem 5 or ECPP is performed.  Without a certificate, the
       method is implementation specific (currently it is identical, but later releases may  use  APRCL).   With
       Math::Prime::Util::GMP installed, this is quite fast through 300 or so digits.

       Math  systems  30  years  ago  typically  used  Miller-Rabin  tests  with "k" bases (usually fixed bases,
       sometimes random) for primality testing, but these have generally been replaced by some form of  BPSW  as
       used  in  this  module.   See  Pinch's  1993  paper for examples of why using "k" M-R tests leads to poor
       results.  The three exceptions in common contemporary use I am aware of are:

       libtommath
           Uses the first "k" prime bases.  This is problematic  for  cryptographic  use,  as  there  are  known
           methods  (e.g. Arnault 1994) for constructing counterexamples.  The number of bases required to avoid
           false results is unreasonably high, hence performance is slow even if  one  ignores  counterexamples.
           Unfortunately  this  is the multi-precision math library used for Perl 6 and at least one CPAN Crypto
           module.

       GMP/MPIR
           Uses a set of "k" static-random bases.  The bases are randomly chosen using a  PRNG  that  is  seeded
           identically each call (the seed changes with each release).  This offers a very slight advantage over
           using  the  first  "k"  prime  bases,  but  not  much.  See, for example, Nicely's mpz_probab_prime_p
           pseudoprimes <http://www.trnicely.net/misc/mpzspsp.html> page.

       Math::Pari (not recent Pari/GP)
           Pari 2.1.7 is the default version installed with the Math::Pari module.  It uses 10 random M-R  bases
           (the  PRNG  uses a fixed seed set at compile time).  Pari 2.3.0 was released in May 2006 and it, like
           all later releases through at least 2.6.1, use BPSW / APRCL, after complaints of false  results  from
           using M-R tests.  For example, it will indicate 9 is prime about 1 out of every 276k calls.

       Basically  the  problem  is  that  it is just too easy to get counterexamples from running "k" M-R tests,
       forcing one to use a very large number of tests (at least 20) to avoid frequent false results.  Using the
       BPSW test results in no known counterexamples after 30+ years and runs much faster.  It can  be  enhanced
       with one or more random bases if one desires, and will still be much faster.

       Using  "k"  fixed bases has another problem, which is that in any adversarial situation we can assume the
       inputs will be selected such that they are one of  our  counterexamples.   Now  we  need  absurdly  large
       numbers  of  tests.   This is like playing "pick my number" but the number is fixed forever at the start,
       the guesser gets to know everyone else's guesses and results, and can keep playing as long as they  like.
       It's only valid if the players are completely oblivious to what is happening.

LIMITATIONS

       Perl  versions  earlier  than  5.8.0  have  problems doing exact integer math.  Some operations will flip
       signs, and many operations will convert intermediate or output results to doubles, which loses  precision
       on  64-bit  systems.   This  causes  numerous functions to not work properly.  The test suite will try to
       determine if your Perl is broken (this only applies to really old versions of Perl  compiled  for  64-bit
       when using numbers larger than "~ 2^49").  The best solution is updating to a more recent Perl.

       The  module  is  thread-safe and should allow good concurrency on all platforms that support Perl threads
       except Win32.  With Win32, either don't use threads or make sure "prime_precalc" is called  before  using
       "primes",  "prime_count",  or "nth_prime" with large inputs.  This is only an issue if you use non-Cygwin
       Win32 and call these routines from within Perl threads.

       Because the loop functions like "forprimes" use "MULTICALL", there is some odd  behavior  with  anonymous
       sub  creation  inside the block.  This is shared with most XS modules that use "MULTICALL", and is rarely
       seen because it is such an unusual use.  An example is:

         forprimes { my $var = "p is $_"; push @subs, sub {say $var}; } 50;
         $_->() for @subs;

       This can be worked around by using double braces for the function, e.g.  "forprimes {{ ... }} 50".

SEE ALSO

       This section describes other CPAN modules available that have some feature overlap with this  one.   Also
       see  the  "REFERENCES"  section.  Please let me know if any of this information is inaccurate.  Also note
       that just because a module doesn't match what I believe are the best set  of  features  doesn't  mean  it
       isn't perfect for someone else.

       I  will use SoE to indicate the Sieve of Eratosthenes, and MPU to denote this module (Math::Prime::Util).
       Some quick alternatives I can recommend if you don't want to use MPU:

       •   Math::Prime::FastSieve is the alternative module I use for basic functionality with  small  integers.
           It's fast and simple, and has a good set of features.

       •   Math::Primality  is  the  alternative module I use for primality testing on bigints.  The downside is
           that it can be slow, and the functions other than primality tests are very slow.

       •   Math::Pari if you want the kitchen sink and can install it and handle using it.  There are still some
           functions it doesn't do well (e.g. prime count and nth_prime).

       Math::Prime::XS has "is_prime" and "primes" functionality.  There is no bigint support.   The  "is_prime"
       function  uses  well-written trial division, meaning it is very fast for small numbers, but terribly slow
       for large 64-bit numbers.  MPU is similarly fast with small numbers,  but  becomes  faster  as  the  size
       increases.   MPXS's  prime sieve is an unoptimized non-segmented SoE which returns an array.  Sieve bases
       larger than "10^7" start taking inordinately long and using a lot of memory (gigabytes  beyond  "10^10").
       E.g. "primes(10**9, 10**9+1000)" takes 36 seconds with MPXS, but only 0.0001 seconds with MPU.

       Math::Prime::FastSieve  supports  "primes",  "is_prime",  "next_prime",  "prev_prime", "prime_count", and
       "nth_prime".  The caveat is that all functions only work within the sieved range, so are limited to about
       "10^10".  It uses a fast SoE to generate the main sieve.  The sieve is 2-3x slower than  the  base  sieve
       for  MPU,  and  is  non-segmented so cannot be used for larger values.  Since the functions work with the
       sieve, they are very fast.  The fast bit-vector-lookup functionality  can  be  replicated  in  MPU  using
       "prime_precalc" but is not required.

       Bit::Vector  supports  the  "primes"  and  "prime_count"  functionality  in  a  somewhat  similar  way to
       Math::Prime::FastSieve.  It is the slowest of all the XS sieves, and has the  most  memory  use.   It  is
       faster than pure Perl code.

       Crypt::Primes  supports  "random_maurer_prime"  functionality.   MPU  has  more options for random primes
       (n-digit, n-bit, ranged, strong, and S-T) in addition to Maurer's  algorithm.   MPU  does  not  have  the
       critical   bug  RT81858  <https://rt.cpan.org/Ticket/Display.html?id=81858>.   MPU  has  a  more  uniform
       distribution     as     well     as     return     a     larger     subset     of     primes     (RT81871
       <https://rt.cpan.org/Ticket/Display.html?id=81871>).   MPU  does  not depend on Math::Pari though can run
       slow for bigints unless the  Math::BigInt::GMP  or  Math::BigInt::Pari  modules  are  installed.   Having
       Math::Prime::Util::GMP  installed  makes  the  speed  vastly  faster.   Crypt::Primes is hardcoded to use
       Crypt::Random which uses /dev/random (blocking source), while MPU uses its  own  ChaCha20  implementation
       seeded  from /dev/urandom or Win32.  MPU can return a primality certificate.  What Crypt::Primes has that
       MPU does not is the ability to return a generator.

       Math::Factor::XS calculates prime factors and factors, which correspond to the  "factor"  and  "divisors"
       functions  of  MPU.   Its  functions  do  not support bigints.  Both are implemented with trial division,
       meaning they are very fast for really small values, but  become  very  slow  as  the  input  gets  larger
       (factoring  19  digit  semiprimes  is over 1000 times slower).  The function "count_prime_factors" can be
       done in MPU using "scalar factor($n)".  See the "EXAMPLES" section  for  a  2-line  function  replicating
       "matches".

       Math::Big  version  1.12  includes "primes" functionality.  The current code is only usable for very tiny
       inputs    as    it    is    incredibly     slow     and     uses     lots     of     memory.      RT81986
       <https://rt.cpan.org/Ticket/Display.html?id=81986>  has  a  patch to make it run much faster and use much
       less memory.  Since it is in pure Perl it will still run quite slow compared to MPU.

       Math::Big::Factors supports factorization using wheel factorization (smart trial division).  It  supports
       bigints.   Unfortunately  it is extremely slow on any input that isn't the product of just small factors.
       Even  7  digit  inputs  can  take  hundreds  or  thousands  of  times  longer  to  factor  than  MPU   or
       Math::Factor::XS.  19-digit semiprimes will take hours versus MPU's single milliseconds.

       Math::Factoring  is a placeholder module for bigint factoring.  Version 0.02 only supports trial division
       (the Pollard-Rho method does not work).

       Math::Prime::TiedArray allows random access to a tied  primes  array,  almost  identically  to  what  MPU
       provides  in  Math::Prime::Util::PrimeArray.  MPU has attempted to fix Math::Prime::TiedArray's shift bug
       (RT58151 <https://rt.cpan.org/Ticket/Display.html?id=58151>).  MPU is typically much faster and will  use
       less  memory,  but there are some cases where MP:TA is faster (MP:TA stores all entries up to the largest
       request, while MPU:PA stores only a window around the last request).

       List::Gen is very interesting and includes a built-in primes iterator as well as a "is_prime" filter  for
       arbitrary sequences.  Unfortunately both are very slow.

       Math::Primality        supports        "is_prime",       "is_pseudoprime",       "is_strong_pseudoprime",
       "is_strong_lucas_pseudoprime",   "next_prime",   "prev_prime",    "prime_count",    and    "is_aks_prime"
       functionality.   This is a great little module that implements primality functionality.  It was the first
       CPAN module to support the BPSW test.  All inputs are processed using  GMP,  so  it  of  course  supports
       bigints.   In  fact,  Math::Primality  was made originally with bigints in mind, while MPU was originally
       targeted to native integers, but both have added better support for the other.  The main differences  are
       extra  functionality  (MPU  has  more  functions)  and  performance.   With native integer inputs, MPU is
       generally  much  faster,  especially  with  "prime_count".   For  bigints,  MPU  is  slower  unless   the
       Math::Prime::Util::GMP  module  is  installed,  in  which  case MPU is 2-4x faster.  Math::Primality also
       installs a "primes.pl" program, but it has much less functionality than the one included with MPU.

       Math::NumSeq does not have a one-to-one mapping between functions in MPU, but it does offer a way to  get
       many  similar  results such as primes, twin primes, Sophie-Germain primes, lucky primes, moebius, divisor
       count, factor count, Euler totient, primorials, etc.  Math::NumSeq is set up for accessing  these  values
       in  order  rather  than  for arbitrary values, though a few sequences support random access.  The primary
       advantage I see is the uniform access mechanism for a lot of sequences.  For those methods that  overlap,
       MPU  is  usually  much  faster.  Importantly, most of the sequences in Math::NumSeq are limited to 32-bit
       indices.

       "cr_combine" in Math::ModInt::ChineseRemainder is similar to MPU's "chinese", and in fact  they  use  the
       same  algorithm.   The former module uses caching of moduli to speed up further operations.  MPU does not
       do this.  This would only be important for cases where the lcm is larger than a native int  (noting  that
       use in cryptography would always have large moduli).

       For combinations and permutations there are many alternatives.  One difference with nearly all of them is
       that  MPU's  "forcomb"  and  "forperm"  functions  don't  operate directly on a user array but on generic
       indices.  Math::Combinatorics and Algorithm::Combinatorics  have  more  features,  but  will  be  slower.
       List::Permutor  does  permutations  with  an iterator.  Algorithm::FastPermute and Algorithm::Permute are
       very similar but can be 2-10x faster than MPU (they use the same user-block  structure  but  twiddle  the
       user array each call).

       There  are  numerous  modules  to perform a set product (also called Cartesian product or cross product).
       These include Set::Product, Math::Cartesian::Product, Set::Scalar, and Set::CrossProduct, as  well  as  a
       few  others.   The  Set::CartesianProduct::Lazy module provides random access, albeit rather slowly.  Our
       "forsetproduct" matches Set::Product in both high performance and  functionality  (that  module's  single
       function "product" in Set::Product is essentially identical to ours).

       Math::Pari  supports a lot of features, with a great deal of overlap.  In general, MPU will be faster for
       native  64-bit  integers,  while  it   differs   for   bigints   (Pari   will   always   be   faster   if
       Math::Prime::Util::GMP is not installed; with it, it varies by function).  Note that Pari extends many of
       these  functions  to  other  spaces  (Gaussian integers, complex numbers, vectors, matrices, polynomials,
       etc.) which are beyond the realm of this module.  Some of the highlights:

       "isprime"
           The default Math::Pari is built with Pari 2.1.7.  This uses 10 M-R tests with randomly  chosen  bases
           (fixed  seed,  but  doesn't  reset  each  invocation  like GMP's "is_probab_prime").  This has a much
           greater chance of false positives compared to the BPSW test -- some  composites  such  as  9,  88831,
           38503,  etc.   (OEIS  A141768  <http://oeis.org/A141768>)  have  a  surprisingly high chance of being
           indicated prime.  Using "isprime($n,1)" will perform an "n-1" proof, but  this  becomes  unreasonably
           slow past 70 or so digits.

           If Math::Pari is built using Pari 2.3.5 (this requires manual configuration) then the primality tests
           are  completely  different.  Using "ispseudoprime" will perform a BPSW test and is quite a bit faster
           than the older test.  "isprime" now does an APR-CL proof (fast, but no certificate).

           Math::Primality uses a strong BPSW test, which is the standard BPSW test based on the 1980 paper.  It
           has no known counterexamples (though like all these tests, we know  some  exist).   Pari  2.3.5  (and
           through at least 2.6.2) uses an almost-extra-strong BPSW test for its "ispseudoprime" function.  This
           is  deterministic  for  native  integers,  and should be excellent for bigints, with a slightly lower
           chance of counterexamples than the traditional strong test.  Math::Prime::Util uses the  full  extra-
           strong  BPSW  test,  which  has an even lower chance of counterexample.  With Math::Prime::Util::GMP,
           "is_prime" adds an extra M-R test using a random base, which further reduces  the  probability  of  a
           composite being allowed to pass.

       "primepi"
           Only  available with version 2.3 of Pari.  Similar to MPU's "prime_count" function in API, but uses a
           naive counting algorithm with its precalculated primes, so is not of practical use.  Incidently, Pari
           2.6 (not usable from Perl) has fixed the pre-calculation requirement so it is  more  useful,  but  is
           still thousands of times slower than MPU.

       "primes"
           Doesn't  support ranges, requires bumping up the precalculated primes for larger numbers, which means
           knowing in advance the upper limit for primes.  Support for numbers larger than 400M  requires  using
           Pari  version  2.3.5.   If  that  is  used,  sieving is about 2x faster than MPU, but doesn't support
           segmenting.

       "factorint"
           Similar to MPU's "factor_exp" though with a slightly different return.  MPU  offers  "factor"  for  a
           linear array of prime factors where
              n = p1 * p2 * p3 * ...   as (p1,p2,p3,...)  and "factor_exp" for an array of factor/exponent pairs
           where:
              n = p1^e1 * p2^e2 * ...  as ([p1,e1],[p2,e2],...)  Pari/GP returns an array similar to the latter.
           Math::Pari returns a transposed matrix like:
              n = p1^e1 * p2^e2 * ...  as ([p1,p2,...],[e1,e2,...])  Slower than MPU for all 64-bit inputs on an
           x86_64   platform,  it  may  be  faster  for  large  values  on  other  platforms.   With  the  newer
           Math::Prime::Util::GMP releases, bigint factoring is slightly faster on average in MPU.

       "divisors"
           Similar to MPU's "divisors".

       "forprime", "forcomposite", "fordiv", "sumdiv"
           Similar to MPU's "forprimes", "forcomposites", "fordivisors", and "divisor_sum".

       "eulerphi", "moebius"
           Similar to MPU's "euler_phi" and "moebius".  MPU is 2-20x  faster  for  native  integers.   MPU  also
           supported  range  inputs,  which  can be much more efficient.  With bigint arguments, MPU is slightly
           faster than Math::Pari if the GMP backend is available, but very slow without.

       "gcd", "lcm", "kronecker", "znorder", "znprimroot", "znlog"
           Similar  to  MPU's  "gcd",  "lcm",  "kronecker",  "znorder",  "znprimroot",  and   "znlog".    Pari's
           "znprimroot"  only  returns  the  smallest root for prime powers.  The behavior is undefined when the
           group is not cyclic (sometimes it throws an exception, sometimes  it  returns  an  incorrect  answer,
           sometimes  it  hangs).   MPU's  "znprimroot"  will  always return the smallest root if it exists, and
           "undef" otherwise.  Similarly, MPU's "znlog"  will  return  the  smallest  "x"  and  work  with  non-
           primitive-root  "g",  which is similar to Pari/GP 2.6, but not the older versions in Math::Pari.  The
           performance of "znlog" is quite good compared to  older  Pari/GP,  but  much  worse  than  2.6's  new
           methods.

       "sigma"
           Similar  to  MPU's "divisor_sum".  MPU is ~10x faster when the result fits in a native integer.  Once
           things overflow it is fairly similar in performance.  However, using  Math::BigInt  can  slow  things
           down quite a bit, so for best performance in these cases using a Math::GMP object is best.

       "numbpart", "forpart"
           Similar  to  MPU's  "partitions" and "forpart".  These functions were introduced in Pari 2.3 and 2.6,
           hence are not in Math::Pari.  "numbpart" produce identical results to "partitions", but Pari is  much
           faster.   forpart  is  very similar to Pari's function, but produces a different ordering (MPU is the
           standard anti-lexicographical, Pari uses a size sort).  Currently Pari is somewhat faster due to Perl
           function call overhead.  When using restrictions, Pari has much better optimizations.

       "eint1"
           Similar to MPU's "ExponentialIntegral".

       "zeta"
           MPU has "RiemannZeta" which takes non-negative real inputs, while Pari's function  supports  negative
           and complex inputs.

       Overall, Math::Pari supports a huge variety of functionality and has a sophisticated and mature code base
       behind  it (noting that the Pari library used is about 10 years old now).  For native integers, typically
       Math::Pari will be slower than MPU.  For bigints, Math::Pari may  be  superior  and  it  rarely  has  any
       performance  surprises.   Some  of  the  unique  features  MPU  offers  include  super fast prime counts,
       nth_prime, ECPP primality proofs with certificates, approximations and limits for  both,  random  primes,
       fast  Mertens calculations, Chebyshev theta and psi functions, and the logarithmic integral and Riemann R
       functions.  All with fairly minimal installation requirements.

PERFORMANCE

       First, for those looking for the state of the art non-Perl solutions:

       Primality testing
           For general numbers smaller than 2000 or so digits, MPU is the fastest solution I am aware of (it  is
           faster    than    Pari    2.7,    PFGW,    and    FLINT).     For    very    large    inputs,    PFGW
           <http://sourceforge.net/projects/openpfgw/> is the fastest primality testing software I'm  aware  of.
           It  has  fast  trial division, and is especially fast on many special forms.  It does not have a BPSW
           test however, and there are quite a few counterexamples for a given base of its PRP test,  so  it  is
           commonly used for fast filtering of large candidates.  A test such as the BPSW test in this module is
           then recommended.

       Primality proofs
           Primo  <http://www.ellipsa.eu/>  is the best method for open source primality proving for inputs over
           1000 digits.  Primo also does well below that size, but other good alternatives are  David  Cleaver's
           mpzaprcl    <http://sourceforge.net/projects/mpzaprcl/>,    the    APRCL   from   the   modern   Pari
           <http://pari.math.u-bordeaux.fr/> package, or  the  standalone  ECPP  from  this  module  with  large
           polynomial set.

       Factoring
           yafu  <http://sourceforge.net/projects/yafu/>,  msieve <http://sourceforge.net/projects/msieve/>, and
           gmp-ecm <http://ecm.gforge.inria.fr/> are all good choices for large inputs.  The factoring  code  in
           this module (and all other CPAN modules) is very limited compared to those.

       Primes
           primesieve  <http://code.google.com/p/primesieve/>  and  yafu <http://sourceforge.net/projects/yafu/>
           are the fastest publically available code I am aware of.  Primesieve will additionally take advantage
           of multiple cores with excellent efficiency.  Tomás Oliveira e Silva's private code may be faster for
           very large values, but isn't available for testing.

           Note that the Sieve of Atkin is not faster  than  the  Sieve  of  Eratosthenes  when  both  are  well
           implemented.   The  only  Sieve  of  Atkin  that  is  even competitive is Bernstein's super optimized
           primegen, which runs on par with the SoE in this module.  The SoE's in Pari, yafu, and primesieve are
           all faster.

       Prime Counts and Nth Prime
           Outside of private research implementations doing prime counts for "n > 2^64", this module should  be
           close  to  state  of  the art in performance, and supports results up to "2^64".  Further performance
           improvements are planned, as well as expansion to larger values.

           The fastest solution for small inputs is a hybrid table/sieve method.   This  module  does  this  for
           values  below  60M.   As the inputs get larger, either the tables have to grow exponentially or speed
           must be sacrificed.  Hence this is not a good general solution for most uses.

   PRIME COUNTS
       Counting the primes to "800_000_000" (800 million):

         Time (s)   Module                      Version  Notes
         ---------  --------------------------  -------  -----------
              0.001 Math::Prime::Util           0.37     using extended LMO
              0.007 Math::Prime::Util           0.12     using Lehmer's method
              0.27  Math::Prime::Util           0.17     segmented mod-30 sieve
              0.39  Math::Prime::Util::PP       0.24     Perl (Lehmer's method)
              0.9   Math::Prime::Util           0.01     mod-30 sieve
              2.9   Math::Prime::FastSieve      0.12     decent odd-number sieve
             11.7   Math::Prime::XS             0.26     needs some optimization
             15.0   Bit::Vector                 7.2
             48.9   Math::Prime::Util::PP       0.14     Perl (fastest I know of)
            170.0   Faster Perl sieve (net)     2012-01  array of odds
            548.1   RosettaCode sieve (net)     2012-06  simplistic Perl
           3048.1   Math::Primality             0.08     Perl + Math::GMPz
         >20000     Math::Big                   1.12     Perl, > 26GB RAM used

       Python's standard modules are very slow: MPMATH v0.17 "primepi" takes 169.5s and 25+ GB  of  RAM.   SymPy
       0.7.1  "primepi"  takes  292.2s.   However  there are very fast solutions written by Robert William Hanks
       (included in the xt/ directory of this distribution): pure Python in 12.1s and NUMPY in 2.8s.

   PRIMALITY TESTING
       Small inputs:  is_prime from 1 to 20M
               2.0s  Math::Prime::Util      (sieve lookup if prime_precalc used)
               2.5s  Math::Prime::FastSieve (sieve lookup)
               3.3s  Math::Prime::Util      (trial + deterministic M-R)
              10.4s  Math::Prime::XS        (trial)
              19.1s  Math::Pari w/2.3.5     (BPSW)
              52.4s  Math::Pari             (10 random M-R)
             480s    Math::Primality        (deterministic M-R)

       Large native inputs:  is_prime from 10^16 to 10^16 + 20M
               4.5s  Math::Prime::Util      (BPSW)
              24.9s  Math::Pari w/2.3.5     (BPSW)
             117.0s  Math::Pari             (10 random M-R)
             682s    Math::Primality        (BPSW)
             30 HRS  Math::Prime::XS        (trial)

             These inputs are too large for Math::Prime::FastSieve.

       bigints:  is_prime from 10^100 to 10^100 + 0.2M
               2.2s  Math::Prime::Util          (BPSW + 1 random M-R)
               2.7s  Math::Pari w/2.3.5         (BPSW)
              13.0s  Math::Primality            (BPSW)
              35.2s  Math::Pari                 (10 random M-R)
              38.6s  Math::Prime::Util w/o GMP  (BPSW)
              70.7s  Math::Prime::Util          (n-1 or ECPP proof)
             102.9s  Math::Pari w/2.3.5         (APR-CL proof)

       •   MPU is consistently the fastest solution, and performs the most stringent  probable  prime  tests  on
           bigints.

       •   Math::Primality  has  a  lot  of  overhead  that  makes it quite slow for native size integers.  With
           bigints we finally see it work well.

       •   Math::Pari built with 2.3.5 not only has a better primality test versus the default 2.1.7,  but  runs
           faster.   It still has quite a bit of overhead with native size integers.  Pari/GP 2.5.0 takes 11.3s,
           16.9s, and 2.9s respectively for the tests above.  MPU is still faster,  but  clearly  the  time  for
           native integers is dominated by the calling overhead.

   FACTORING
       Factoring  performance  depends  on  the  input,  and  the  algorithm choices used are still being tuned.
       Math::Factor::XS is very fast when given input with only small factors, but it slows down rapidly as  the
       smallest  factor  increases  in  size.  For numbers larger than 32 bits, Math::Prime::Util can be 100x or
       more faster (a number with only very small factors will be nearly identical, while  a  semiprime  may  be
       3000x  faster).   Math::Pari  is  much slower with native sized inputs, probably due to calling overhead.
       For bigints, the  Math::Prime::Util::GMP  module  is  needed  or  performance  will  be  far  worse  than
       Math::Pari.   With  the  GMP  module,  performance is pretty similar from 20 through 70 digits, which the
       caveat that the current MPU factoring uses more memory for 60+ digit numbers.

       This slide presentation <http://math.boisestate.edu/~liljanab/BOISECRYPTFall09/Jacobsen.pdf> has a lot of
       data on 64-bit and GMP factoring performance I collected in 2009.  Assuming  you  do  not  know  anything
       about  the  inputs, trial division and optimized Fermat or Lehman work very well for small numbers (<= 10
       digits), while native SQUFOF is typically the method of choice for 11-18 digits (I've seen claims that  a
       lightweight QS can be faster for 15+ digits).  Some form of Quadratic Sieve is usually used for inputs in
       the  19-100  digit  range,  and  beyond that is the General Number Field Sieve.  For serious factoring, I
       recommend       looking       at       yafu        <http://sourceforge.net/projects/yafu/>,        msieve
       <http://sourceforge.net/projects/msieve/>,       gmp-ecm       <http://ecm.gforge.inria.fr/>,       GGNFS
       <http://sourceforge.net/projects/ggnfs/>, and Pari <http://pari.math.u-bordeaux.fr/>.   The  latest  yafu
       should  cover  most  uses, with GGNFS likely only providing a benefit for numbers large enough to warrant
       distributed processing.

   PRIMALITY PROVING
       The "n-1" proving algorithm in Math::Prime::Util::GMP compares well to  the  version  included  in  Pari.
       Both  are  pretty  fast  to about 60 digits, and work reasonably well to 80 or so before starting to take
       many minutes per number on a fast  computer.   Version  0.09  and  newer  of  MPU::GMP  contain  an  ECPP
       implementation  that,  while  not state of the art compared to closed source solutions, works quite well.
       It averages less than a second for proving 200-digit primes  including  creating  a  certificate.   Times
       below  200  digits  are  faster  than  Pari  2.3.5's APR-CL proof.  For larger inputs the bottleneck is a
       limited set of discriminants, and time becomes more variable.  There is a larger set of discriminants  on
       github  that  help,  with  300-digit primes taking ~5 seconds on average and typically under a minute for
       500-digits.  For primality proving with very large numbers, I recommend Primo <http://www.ellipsa.eu/>.

   RANDOM PRIME GENERATION
       Seconds per prime  for  random  prime  generation  on  a  early  2015  Macbook  Pro  (2.7  GHz  i5)  with
       Math::BigInt::GMP and Math::Prime::Util::GMP installed.

         bits    random   +testing   Maurer   Shw-Tylr  CPMaurer
         -----  --------  --------  --------  --------  --------
            64    0.00002 +0.000009   0.00004   0.00004    0.019
           128    0.00008 +0.00014    0.00018   0.00012    0.051
           256    0.0004  +0.0003     0.00085   0.00058    0.13
           512    0.0023  +0.0007     0.0048    0.0030     0.40
          1024    0.019   +0.0033     0.034     0.025      1.78
          2048    0.26    +0.014      0.41      0.25       8.02
          4096    2.82    +0.11       4.4       3.0      66.7
          8192   23.7     +0.65      50.8      38.7     929.4

         random    = random_nbit_prime  (results pass BPSW)
         random+   = additional time for 3 M-R and a Frobenius test
         maurer    = random_maurer_prime
         Shw-Tylr  = random_shawe_taylor_prime
         CPMaurer  = Crypt::Primes::maurer

       "random_nbit_prime"  is  reasonably  fast,  and  for  most  purposes  should  suffice.  For cryptographic
       purposes, one may want additional tests or a proven prime.  Additional tests are quite cheap, as shown by
       the time for three extra M-R and a Frobenius test.  At these bit sizes, the chances  a  composite  number
       passes BPSW, three more M-R tests, and a Frobenius test is extraordinarily small.

       "random_proven_prime" provides a randomly selected prime with an optional certificate, without specifying
       the  particular  method.   With  GMP  installed  this  always  uses  Maurer's algorithm as it is the best
       compromise between speed and diversity.

       "random_maurer_prime" constructs a provable prime.  A primality test is run on each intermediate, and  it
       also  constructs  a  complete  primality  certificate which is verified at the end (and can be returned).
       While the result is uniformly distributed, only about 10% of the primes in the  range  are  selected  for
       output.  This is a result of the FastPrime algorithm and is usually unimportant.

       "random_shawe_taylor_prime"  similarly  constructs  a  provable  prime.   It  uses a simpler construction
       method.  It is slightly faster than Maurer's algorithm but provides less diversity (even fewer primes  in
       the  range  are  selected,  though  for  typical  cryptographic  sizes  this is not important).  The Perl
       implementation uses a single large random seed followed by SHA-256 as specified by FIPS 186-4.   The  GMP
       implementation uses the same FIPS 186-4 algorithm but uses its own CSPRNG which may not be SHA-256.

       "maurer"  in  Crypt::Primes times are included for comparison.  It is reasonably fast for small sizes but
       gets slow as the size increases.  It is 10 to 500 times slower than this module's GMP methods.   It  does
       not  perform  any  primality checks on the intermediate results or the final result (I highly recommended
       running a primality test on the output).  Additionally important for servers, "maurer"  in  Crypt::Primes
       uses  excessive system entropy and can grind to a halt if "/dev/random" is exhausted (it can take days to
       return).

AUTHORS

       Dana Jacobsen <dana@acm.org>

ACKNOWLEDGEMENTS

       Eratosthenes of Cyrene provided the elegant and simple algorithm for finding primes.

       Terje Mathisen, A.R. Quesada, and B. Van Pelt all had useful ideas which I used in my wheel sieve.

       The SQUFOF implementation being used is a slight modification to the public domain racing version written
       by Ben Buhrow.  Enhancements with ideas from Ben's later code as  well  as  Jason  Papadopoulos's  public
       domain implementations are planned for a later version.

       The  LMO  implementation is based on the 2003 preprint from Christian Bau, as well as the 2006 paper from
       Tomás Oliveira e Silva.  I also want to thank Kim Walisch for the many discussions about prime counting.

REFERENCES

       •   Christian Axler, "New bounds for the prime  counting  function  π(x)",  September  2014.   For  large
           values, improved limits versus Dusart 2010.  <http://arxiv.org/abs/1409.1780>

       •   Christian  Axler,  "Über die Primzahl-Zählfunktion, die n-te Primzahl und verallgemeinerte Ramanujan-
           Primzahlen", January 2013.  Prime count and nth-prime bounds in more detail.  Thesis in  German,  but
           first                    part                    is                    easily                   read.
           <http://docserv.uni-duesseldorf.de/servlets/DerivateServlet/Derivate-28284/pdfa-1b.pdf>

       •   Christian  Bau,  "The  Extended  Meissel-Lehmer  Algorithm",  2003,   preprint   with   example   C++
           implementation.   Very  detailed  implementation-specific paper which was used for the implementation
           here.       Highly      recommended       for       implementing       a       sieve-based       LMO.
           <http://cs.swan.ac.uk/~csoliver/ok-sat-library/OKplatform/ExternalSources/sources/NumberTheory/ChristianBau/>

       •   Manuel  Benito  and  Juan  L.  Varona,  "Recursive  formulas  related  to the summation of the Möbius
           function", The Open Mathematics Journal, v1, pp 25-34, 2007.  Among many other things, shows a simple
           formula for computing the Mertens functions with only n/3 Möbius values (not as fast as Deléglise and
           Rivat,                          but                          really                          simple).
           <http://www.unirioja.es/cu/jvarona/downloads/Benito-Varona-TOMATJ-Mertens.pdf>

       •   John  Brillhart, D. H. Lehmer, and J. L. Selfridge, "New Primality Criteria and Factorizations of 2^m
           +/-    1",    Mathematics    of    Computation,    v29,    n130,    Apr     1975,     pp     620-647.
           <http://www.ams.org/journals/mcom/1975-29-130/S0025-5718-1975-0384673-1/S0025-5718-1975-0384673-1.pdf>

       •   W. J. Cody and Henry C. Thacher, Jr., "Rational Chebyshev Approximations for the Exponential Integral
           E_1(x)", Mathematics of Computation, v22, pp 641-649, 1968.

       •   W.  J. Cody and Henry C. Thacher, Jr., "Chebyshev approximations for the exponential integral Ei(x)",
           Mathematics         of         Computation,         v23,          pp          289-303,          1969.
           <http://www.ams.org/journals/mcom/1969-23-106/S0025-5718-1969-0242349-2/>

       •   W. J. Cody, K. E. Hillstrom, and Henry C. Thacher Jr., "Chebyshev Approximations for the Riemann Zeta
           Function", "Mathematics of Computation", v25, n115, pp 537-547, July 1971.

       •   Henri  Cohen,  "A  Course  in  Computational  Algebraic  Number  Theory",  Springer, 1996.  Practical
           computational number theory from the team lead of Pari  <http://pari.math.u-bordeaux.fr/>.   Lots  of
           explicit algorithms.

       •   Marc  Deléglise  and  Joöl  Rivat,  "Computing  the  summation  of the Möbius function", Experimental
           Mathematics, v5, n4, pp 291-295, 1996.  Enhances the Möbius computation in  Lioen/van  de  Lune,  and
           gives      a      very      efficient      way      to      compute     the     Mertens     function.
           <http://projecteuclid.org/euclid.em/1047565447>

       •   Pierre Dusart, "Autour de la fonction qui compte le nombre de nombres premiers",  PhD  thesis,  1998.
           In  French.  The mathematics is readable and highly recommended reading if you're interested in prime
           number bounds.  <http://www.unilim.fr/laco/theses/1998/T1998_01.html>

       •   Pierre Dusart, "Estimates of Some Functions Over Primes without R.H.", preprint,  2010.   Updates  to
           the best non-RH bounds for prime count and nth prime.  <http://arxiv.org/abs/1002.0442/>

       •   Pierre-Alain  Fouque  and Mehdi Tibouchi, "Close to Uniform Prime Number Generation With Fewer Random
           Bits", pre-print, 2011.  Describes random prime distributions, their algorithm  for  creating  random
           primes  using  few  random  bits, and comparisons to other methods.  Definitely worth reading for the
           discussions of uniformity.  <http://eprint.iacr.org/2011/481>

       •   Walter M. Lioen and Jan van de Lune, "Systematic Computations on Mertens' Conjecture and  Dirichlet's
           Divisor  Problem  by  Vectorized  Sieving",  in  From  Universal Morphisms to Megabytes, Centrum voor
           Wiskunde en Informatica, pp. 421-432, 1994.  Describes a nice  way  to  compute  a  range  of  Möbius
           values.  <http://walter.lioen.com/papers/LL94.pdf>

       •   Ueli  M.  Maurer,  "Fast Generation of Prime Numbers and Secure Public-Key Cryptographic Parameters",
           1995.     Generating     random     provable     primes     by     building     up     the     prime.
           <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.26.2151>

       •   Gabriel  Mincu,  "An  Asymptotic Expansion", Journal of Inequalities in Pure and Applied Mathematics,
           v4,  n2,  2003.   A  very   readable   account   of   Cipolla's   1902   nth   prime   approximation.
           <http://www.emis.de/journals/JIPAM/images/153_02_JIPAM/153_02.pdf>

       •   OEIS: Primorial <http://oeis.org/wiki/Primorial>

       •   Vincent  Pegoraro  and  Philipp  Slusallek,  "On  the  Evaluation  of  the Complex-Valued Exponential
           Integral",  Journal  of   Graphics,   GPU,   and   Game   Tools,   v15,   n3,   pp   183-198,   2011.
           <http://www.cs.utah.edu/~vpegorar/research/2011_JGT/paper.pdf>

       •   William H. Press et al., "Numerical Recipes", 3rd edition.

       •   Hans  Riesel,  "Prime Numbers and Computer Methods for Factorization", Birkh?user, 2nd edition, 1994.
           Lots of information, some code, easy to follow.

       •   David M. Smith, "Multiple-Precision Exponential Integral and Related Functions", ACM Transactions  on
           Mathematical Software, v37, n4, 2011.  <http://myweb.lmu.edu/dmsmith/toms2011.pdf>

       •   Douglas  A.  Stoll  and  Patrick  Demichel  ,  "The  impact  of  ζ(s)  complex  zeros on π(x) for x <
           10^{10^{13}}",   "Mathematics   of   Computation",   v80,   n276,   pp   2381-2394,   October   2011.
           <http://www.ams.org/journals/mcom/2011-80-276/S0025-5718-2011-02477-4/home.html>

COPYRIGHT

       Copyright 2011-2018 by Dana Jacobsen <dana@acm.org>

       This  program  is  free  software;  you can redistribute it and/or modify it under the same terms as Perl
       itself.

perl v5.34.0                                       2022-02-06                             Math::Prime::Util(3pm)