Provided by: grass-doc_7.8.7-1_all 

NAME
r.resamp.filter - Resamples raster map layers using an analytic kernel.
KEYWORDS
raster, resample, kernel filter, filter, convolution, FIR, bartlett, blackman, box, gauss, hamming, hann,
hermite, lanczos, sinc
SYNOPSIS
r.resamp.filter
r.resamp.filter --help
r.resamp.filter [-n] input=name output=name filter=string[,string,...] [radius=float[,float,...]]
[x_radius=float[,float,...]] [y_radius=float[,float,...]] [--overwrite] [--help] [--verbose]
[--quiet] [--ui]
Flags:
-n
Propagate NULLs
--overwrite
Allow output files to overwrite existing files
--help
Print usage summary
--verbose
Verbose module output
--quiet
Quiet module output
--ui
Force launching GUI dialog
Parameters:
input=name [required]
Name of input raster map
output=name [required]
Name for output raster map
filter=string[,string,...] [required]
Filter kernel(s)
Options: box, bartlett, gauss, normal, hermite, sinc, lanczos1, lanczos2, lanczos3, hann, hamming,
blackman
radius=float[,float,...]
Filter radius
x_radius=float[,float,...]
Filter radius (horizontal)
y_radius=float[,float,...]
Filter radius (vertical)
DESCRIPTION
r.resamp.filter resamples an input raster, filtering the input with an analytic kernel. Each output cell
is typically calculated based upon a small subset of the input cells, not the entire input.
r.resamp.filter performs convolution (i.e. a weighted sum is calculated for every raster cell).
The module maps the input range to the width of the window function, so wider windows will be "sharper"
(have a higher cut-off frequency), e.g. lanczos3 will be sharper than lanczos2.
r.resamp.filter implements FIR (finite impulse response) filtering. All of the functions are low-pass
filters, as they are symmetric. See Wikipedia: Window function for examples of common window functions
and their frequency responses.
A piecewise-continuous function defined by sampled data can be considered a mixture (sum) of the
underlying signal and quantisation noise. The intent of a low pass filter is to discard the quantisation
noise while retaining the signal. The cut-off frequency is normally chosen according to the sampling
frequency, as the quantisation noise is dominated by the sampling frequency and its harmonics. In
general, the cut-off frequency is inversely proportional to the width of the central "lobe" of the window
function.
When using r.resamp.filter with a specific radius, a specific cut-off frequency regardless of the method
is chosen. So while lanczos3 uses 3 times as large a window as lanczos1, the cut-off frequency remains
the same. Effectively, the radius is "normalised".
All of the kernels specified by the filter parameter are multiplied together. Typical usage will use
either a single kernel or an infinite kernel along with a finite window.
NOTES
Resampling modules (r.resample, r.resamp.stats, r.resamp.interp, r.resamp.rst, r.resamp.filter) resample
the map to match the current region settings.
When using a kernel which can have negative values (sinc, Lanczos), the -n flag should be used.
Otherwise, extreme values can arise due to the total weight being close (or even equal) to zero.
Kernels with infinite extent (Gauss, normal, sinc, Hann, Hamming, Blackman) must be used in conjunction
with a finite windowing function (box, Bartlett, Hermite, Lanczos).
The way that Lanczos filters are defined, the number of samples is supposed to be proportional to the
order ("a" parameter), so lanczos3 should use 3 times as many samples (at the same sampling frequency,
i.e. cover 3 times as large a time interval) as lanczos1 in order to get a similar frequency response
(higher-order filters will fall off faster, but the frequency at which the fall-off starts should be the
same). See Wikipedia: Lanczos-kernel.svg for an illustration. If both graphs were drawn on the same axes,
they would have roughly the same shape, but the a=3 window would have a longer tail. By scaling the axes
to the same width, the a=3 window has a narrower central lobe.
For longitude-latitude locations, the interpolation algorithm is based on degree fractions, not on the
absolute distances between cell centers. Any attempt to implement the latter would violate the integrity
of the interpolation method.
SEE ALSO
g.region, r.mfilter, r.resample, r.resamp.interp, r.resamp.rst, r.resamp.stats
Overview: Interpolation and Resampling in GRASS GIS
AUTHOR
Glynn Clements
SOURCE CODE
Available at: r.resamp.filter source code (history)
Accessed: unknown
Main index | Raster index | Topics index | Keywords index | Graphical index | Full index
© 2003-2022 GRASS Development Team, GRASS GIS 7.8.7 Reference Manual
GRASS 7.8.7 r.resamp.filter(1grass)